Research Centre for Radwaste Disposal & Williamson Research Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Leeds Electron Microscopy and Spectroscopy Centre, School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.
Sci Rep. 2018 Jun 8;8(1):8753. doi: 10.1038/s41598-018-26963-8.
Intermediate level radioactive waste (ILW) generally contains a heterogeneous range of organic and inorganic materials, of which some are encapsulated in cement. Of particular concern are cellulosic waste items, which will chemically degrade under the conditions predicted during waste disposal, forming significant quantities of isosaccharinic acid (ISA), a strongly chelating ligand. ISA therefore has the potential to increase the mobility of a wide range of radionuclides via complex formation, including Ni-63 and Ni-59. Although ISA is known to be metabolized by anaerobic microorganisms, the biodegradation of metal-ISA complexes remains unexplored. This study investigates the fate of a Ni-ISA complex in Fe(III)-reducing enrichment cultures at neutral pH, representative of a microbial community in the subsurface. After initial sorption of Ni onto Fe(III)oxyhydroxides, microbial ISA biodegradation resulted in >90% removal of the remaining Ni from solution when present at 0.1 mM, whereas higher concentrations of Ni proved toxic. The microbial consortium associated with ISA degradation was dominated by close relatives to Clostridia and Geobacter species. Nickel was preferentially immobilized with trace amounts of biogenic amorphous iron sulfides. This study highlights the potential for microbial activity to help remove chelating agents and radionuclides from the groundwater in the subsurface geosphere surrounding a geodisposal facility.
中放废物(ILW)通常含有种类繁多的有机和无机物质,其中一些被封装在水泥中。特别值得关注的是纤维素废物,它们在废物处置过程中预测的条件下会发生化学降解,形成大量的异戊酸(ISA),这是一种强螯合剂。因此,ISA 有可能通过形成配合物来增加包括 Ni-63 和 Ni-59 在内的多种放射性核素的迁移性。尽管已知 ISA 可被厌氧微生物代谢,但金属-ISA 配合物的生物降解仍未得到探索。本研究调查了 Ni-ISA 配合物在中性 pH 值下的 Fe(III)还原富集培养物中的命运,这代表了地下微生物群落的特征。在 Ni 最初吸附到 Fe(III)氢氧化物上之后,当 ISA 生物降解存在于 0.1 mM 时,溶液中剩余的 Ni 有超过 90%被去除,而较高浓度的 Ni 则具有毒性。与 ISA 降解相关的微生物群落主要由梭菌和 Geobacter 属的密切相关的物种组成。镍优先与痕量的生物成因非晶态铁硫化物固定。本研究强调了微生物活性在帮助从地质处置设施周围地下地质圈中的地下水去除螯合剂和放射性核素方面的潜力。