Tay Andy, Sohrabi Ali, Poole Kate, Seidlits Stephanie, Di Carlo Dino
Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
Adv Mater. 2018 Jun 10:e1800927. doi: 10.1002/adma.201800927.
Neuromodulation tools are useful to decipher and modulate neural circuitries implicated in functions and diseases. Existing electrical and chemical tools cannot offer specific neural modulation while optogenetics has limitations for deep tissue interfaces, which might be overcome by miniaturized optoelectronic devices in the future. Here, a 3D magnetic hyaluronic hydrogel is described that offers noninvasive neuromodulation via magnetomechanical stimulation of primary dorsal root ganglion (DRG) neurons. The hydrogel shares similar biochemical and biophysical properties as the extracellular matrix of spinal cord, facilitating healthy growth of functional neurites and expression of excitatory and inhibitory ion channels. By testing with different neurotoxins, and micropillar substrate deflections with electrophysical recordings, it is found that acute magnetomechanical stimulation induces calcium influx in DRG neurons primarily via endogenous, mechanosensitive TRPV4 and PIEZO2 channels. Next, capitalizing on the receptor adaptation characteristic of DRG neurons, chronic magnetomechanical stimulation is performed and found that it reduces the expression of PIEZO2 channels, which can be useful for modulating pain where mechanosensitive channels are typically overexpressed. A general strategy is thus offered for neuroscientists and material scientists to fabricate 3D magnetic biomaterials tailored to different types of excitable cells for remote magnetomechanical modulation.
神经调节工具对于破译和调节与功能及疾病相关的神经回路很有用。现有的电学和化学工具无法实现特异性神经调节,而光遗传学在深部组织界面存在局限性,未来可能会被小型化光电器件克服。在此,描述了一种三维磁性透明质酸水凝胶,它通过对初级背根神经节(DRG)神经元进行磁机械刺激来提供非侵入性神经调节。该水凝胶具有与脊髓细胞外基质相似的生化和生物物理特性,有利于功能性神经突的健康生长以及兴奋性和抑制性离子通道的表达。通过用不同的神经毒素进行测试,以及结合电生理记录对微柱底物进行偏转测试,发现急性磁机械刺激主要通过内源性机械敏感的TRPV4和PIEZO2通道诱导DRG神经元中的钙内流。接下来,利用DRG神经元的受体适应性特征进行慢性磁机械刺激,发现它会降低PIEZO2通道的表达,这对于调节机械敏感通道通常过度表达的疼痛可能有用。因此,为神经科学家和材料科学家提供了一种通用策略,用于制造针对不同类型可兴奋细胞的三维磁性生物材料,以进行远程磁机械调节。