Suppr超能文献

正电子发射断层扫描(PET)纹理特征稳定性及其在放射组学分析中的模式判别能力:一项“特定”的体模研究。

PET textural features stability and pattern discrimination power for radiomics analysis: An "ad-hoc" phantoms study.

机构信息

Nuclear Medicine Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.

Nuclear Medicine Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.

出版信息

Phys Med. 2018 Jun;50:66-74. doi: 10.1016/j.ejmp.2018.05.024. Epub 2018 May 30.

Abstract

PURPOSE

The analysis of PET images by textural features, also known as radiomics, shows promising results in tumor characterization. However, radiomic metrics (RMs) analysis is currently not standardized and the impact of the whole processing chain still needs deep investigation. We characterized the impact on RM values of: i) two discretization methods, ii) acquisition statistics, and iii) reconstruction algorithm. The influence of tumor volume and standardized-uptake-value (SUV) on RM was also investigated.

METHODS

The Chang-Gung-Image-Texture-Analysis (CGITA) software was used to calculate 39 RMs using phantom data. Thirty noise realizations were acquired to measure statistical effect size indicators for each RM. The parameter η (fraction of variance explained by the nuisance factor) was used to assess the effect of categorical variables, considering η < 20% and 20% < η < 40% as representative of a "negligible" and a "small" dependence respectively. The Cohen's d was used as discriminatory power to quantify the separation of two distributions.

RESULTS

We found the discretization method based on fixed-bin-number (FBN) to outperform the one based on fixed-bin-size in units of SUV (FBS), as the latter shows a higher SUV dependence, with 30 RMs showing η > 20%. FBN was also less influenced by the acquisition and reconstruction setup:with FBN 37 RMs had η < 40%, only 20 with FBS. Most RMs showed a good discriminatory power among heterogeneous PET signals (for FBN: 29 out of 39 RMs with d > 3).

CONCLUSIONS

For RMs analysis, FBN should be preferred. A group of 21 RMs was suggested for PET radiomics analysis.

摘要

目的

通过纹理特征(也称为放射组学)对 PET 图像进行分析,在肿瘤特征描述方面显示出良好的效果。然而,放射组学指标(RMs)分析目前尚未标准化,整个处理链的影响仍需要深入研究。我们对以下因素对 RM 值的影响进行了特征描述:i)两种离散化方法,ii)采集统计信息,以及 iii)重建算法。还研究了肿瘤体积和标准化摄取值(SUV)对 RM 的影响。

方法

使用 Phantom 数据,使用 Chang-Gung-Image-Texture-Analysis(CGITA)软件计算 39 个 RM。对每种 RM 测量了 30 个噪声实现的统计效应大小指标。参数η(由杂项因素解释的方差分数)用于评估分类变量的影响,考虑η<20%和 20%<η<40%分别代表“可忽略”和“较小”的依赖性。Cohen's d 用于量化两个分布的分离度,作为判别力的量化指标。

结果

我们发现基于固定-bin-number(FBN)的离散化方法优于基于 SUV 单位固定-bin-size(FBS)的方法,因为后者显示出更高的 SUV 依赖性,其中 30 个 RM 的η值大于 20%。FBN 还受到采集和重建设置的影响较小:使用 FBN 时,37 个 RM 的η值小于 40%,而使用 FBS 时只有 20 个。大多数 RM 在异质 PET 信号中显示出良好的区分能力(对于 FBN:39 个 RM 中有 29 个 d 值大于 3)。

结论

对于 RMs 分析,应优先选择 FBN。建议使用一组 21 个 RM 进行 PET 放射组学分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验