Alexander C M O'D, Cody G D, De Gregorio B T, Nittler L R, Stroud R M
Dept. Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, Washington, DC 20015, USA.
Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, DC 20015, USA.
Chem Erde. 2017 May;77(2):227-256. doi: 10.1016/j.chemer.2017.01.007. Epub 2017 Jan 26.
All chondrites accreted ~3.5 wt.% C in their matrices, the bulk of which was in a macromolecular solvent and acid insoluble organic material (IOM). Similar material to IOM is found in interplanetary dust particles (IDPs) and comets. The IOM accounts for almost all of the C and N in chondrites, and a significant fraction of the H. Chondrites and, to a lesser extent, comets were probably the major sources of volatiles for the Earth and the other terrestrial planets. Hence, IOM was both the major source of Earth's volatiles and a potential source of complex prebiotic molecules. Large enrichments in D and N, relative to the bulk solar isotopic compositions, suggest that IOM or its precursors formed in very cold, radiation-rich environments. Whether these environments were in the interstellar medium (ISM) or the outer Solar System is unresolved. Nevertheless, the elemental and isotopic compositions and functional group chemistry of IOM provide important clues to the origin(s) of organic matter in protoplanetary disks. IOM is modified relatively easily by thermal and aqueous processes, so that it can also be used to constrain the conditions in the solar nebula prior to chondrite accretion and the conditions in the chondrite parent bodies after accretion. Here we review what is known about the abundances, compositions and physical nature of IOM in the most primitive chondrites. We also discuss how the IOM has been modified by thermal metamorphism and aqueous alteration in the chondrite parent bodies, and how these changes may be used both as petrologic indicators of the intensity of parent body processing and as tools for classification. Finally, we critically assess the various proposed mechanisms for the formation of IOM in the ISM or Solar System.
所有球粒陨石在其基质中都吸积了约3.5 wt.%的碳,其中大部分存在于大分子溶剂和酸不溶性有机物质(IOM)中。在行星际尘埃颗粒(IDP)和彗星中发现了与IOM类似的物质。IOM几乎占了球粒陨石中所有的碳和氮,以及相当一部分的氢。球粒陨石以及程度稍轻的彗星可能是地球和其他类地行星挥发物的主要来源。因此,IOM既是地球挥发物的主要来源,也是复杂益生元前体分子的潜在来源。相对于太阳整体同位素组成,D和N的大量富集表明IOM或其前体在非常寒冷、富含辐射的环境中形成。这些环境是在星际介质(ISM)中还是在太阳系外部尚未确定。然而,IOM的元素和同位素组成以及官能团化学为原行星盘中有机物的起源提供了重要线索。IOM相对容易受到热过程和水过程的影响而发生改变,因此它也可用于限制球粒陨石吸积之前太阳星云的条件以及吸积之后球粒陨石母体中的条件。在这里,我们综述了关于最原始球粒陨石中IOM的丰度、组成和物理性质的已知信息。我们还讨论了IOM在球粒陨石母体中是如何通过热变质作用和水蚀变作用而发生改变的,以及这些变化如何既作为母体加工强度的岩石学指标,又作为分类工具。最后,我们批判性地评估了在星际介质或太阳系中IOM形成的各种提出的机制。