Cilia biology and neurogenesis, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France.
Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs, Lyngby, Denmark.
Nat Commun. 2018 Jun 11;9(1):2279. doi: 10.1038/s41467-018-04676-w.
Multiciliated ependymal cells line all brain cavities. The beating of their motile cilia contributes to the flow of cerebrospinal fluid, which is required for brain homoeostasis and functions. Motile cilia, nucleated from centrioles, persist once formed and withstand the forces produced by the external fluid flow and by their own cilia beating. Here, we show that a dense actin network around the centrioles is induced by cilia beating, as shown by the disorganisation of the actin network upon impairment of cilia motility. Moreover, disruption of the actin network, or specifically of the apical actin network, causes motile cilia and their centrioles to detach from the apical surface of ependymal cell. In conclusion, cilia beating controls the apical actin network around centrioles; the mechanical resistance of this actin network contributes, in turn, to centriole stability.
纤毛柱状上皮细胞排列在所有脑腔中。它们的纤毛摆动有助于脑脊髓液的流动,这对于大脑的内环境稳定和功能至关重要。纤毛从中心粒中形成后会持续存在,并能承受来自外部流体流动和自身纤毛摆动产生的力。在这里,我们表明,纤毛的摆动会诱导中心粒周围的致密肌动蛋白网络的形成,这可以通过破坏纤毛的运动导致肌动蛋白网络的紊乱来证明。此外,肌动蛋白网络的破坏,或者特别是顶端肌动蛋白网络的破坏,导致能动的纤毛和它们的中心粒从室管膜细胞的顶端表面脱离。总之,纤毛的摆动控制着中心粒周围的顶端肌动蛋白网络;而这个肌动蛋白网络的机械阻力反过来又有助于中心粒的稳定性。