Suppr超能文献

在深度学习尖峰神经网络架构中模拟感知前脑过程。

Modelling Peri-Perceptual Brain Processes in a Deep Learning Spiking Neural Network Architecture.

机构信息

Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, AUT Tower, 7th floor, 2 Wakefield Street, Auckland, 1010, New Zealand.

College of Business Law & Social Sciences, School of Social Sciences, Nottingham Trent University, Nottingham, United Kingdom.

出版信息

Sci Rep. 2018 Jun 11;8(1):8912. doi: 10.1038/s41598-018-27169-8.

Abstract

Familiarity of marketing stimuli may affect consumer behaviour at a peri-perceptual processing level. The current study introduces a method for deep learning of electroencephalogram (EEG) data using a spiking neural network (SNN) approach that reveals the complexity of peri-perceptual processes of familiarity. The method is applied to data from 20 participants viewing familiar and unfamiliar logos. The results support the potential of SNN models as novel tools in the exploration of peri-perceptual mechanisms that respond differentially to familiar and unfamiliar stimuli. Specifically, the activation pattern of the time-locked response identified by the proposed SNN model at approximately 200 milliseconds post-stimulus suggests greater connectivity and more widespread dynamic spatio-temporal patterns for familiar than unfamiliar logos. The proposed SNN approach can be applied to study other peri-perceptual or perceptual brain processes in cognitive and computational neuroscience.

摘要

营销刺激的熟悉度可能会在感知前处理水平上影响消费者行为。本研究引入了一种使用尖峰神经网络 (SNN) 方法对脑电图 (EEG) 数据进行深度学习的方法,该方法揭示了感知前过程熟悉度的复杂性。该方法应用于 20 名参与者观看熟悉和不熟悉标志的数据分析中。结果支持 SNN 模型作为探索对熟悉和不熟悉刺激做出不同反应的感知前机制的新工具的潜力。具体来说,由所提出的 SNN 模型在刺激后约 200 毫秒识别的时锁响应的激活模式表明,与不熟悉的标志相比,熟悉的标志具有更高的连通性和更广泛的动态时空模式。所提出的 SNN 方法可用于研究认知和计算神经科学中其他感知前或感知大脑过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d96/5995966/0cb9256da59b/41598_2018_27169_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验