Suppr超能文献

使用机器学习模型预测钙钛矿氧化物热力学稳定性的数据和补充信息。

Data and Supplemental information for predicting the thermodynamic stability of perovskite oxides using machine learning models.

作者信息

Li Wei, Jacobs Ryan, Morgan Dane

机构信息

Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Data Brief. 2018 May 8;19:261-263. doi: 10.1016/j.dib.2018.05.007. eCollection 2018 Aug.

Abstract

To better present the machine learning work and the data used, we prepared a supplemental spreadsheet to organize the full training dataset prepared from DFT calculations, the individual elemental properties, the generated element-based descriptors derived from the elements present in each perovskite composition, and lists of the specific features selected and used our machine learning models. We have also provided supplemental information which contains additional details related to our machine learning models which were not provided in the main text (Li et al., In press) [1]. In particular, the supplemental information provides results on training and testing five regression models (using the same data and descriptors as the regression of in main text) to predict the formation energies of perovskite oxides. We provided source code that trains the machine learning models on the provided training dataset and predicts the stability for the test data.

摘要

为了更好地展示机器学习工作及所使用的数据,我们准备了一个补充电子表格,用于整理从密度泛函理论(DFT)计算制备的完整训练数据集、单个元素属性、从每种钙钛矿组成中的元素衍生出的基于元素的描述符,以及所选并用于我们机器学习模型的特定特征列表。我们还提供了补充信息,其中包含与我们机器学习模型相关的其他详细信息,这些信息在正文(Li等人,即将发表)[1]中未给出。特别是,补充信息提供了训练和测试五个回归模型(使用与正文回归相同的数据和描述符)以预测钙钛矿氧化物形成能的结果。我们提供了在给定训练数据集上训练机器学习模型并预测测试数据稳定性的源代码。

相似文献

2
Dataset of theoretical multinary perovskite oxides.理论多元钙钛矿氧化物数据集。
Sci Data. 2023 Apr 28;10(1):244. doi: 10.1038/s41597-023-02127-w.
4
Interpretable machine learning-assisted screening of perovskite oxides.可解释的机器学习辅助筛选钙钛矿氧化物
RSC Adv. 2024 Jan 26;14(6):3909-3922. doi: 10.1039/d3ra08591k. eCollection 2024 Jan 23.
8
Element Code from Pseudopotential as Efficient Descriptors for a Machine Learning Model to Explore Potential Lead-Free Halide Perovskites.
J Phys Chem Lett. 2020 Oct 15;11(20):8914-8921. doi: 10.1021/acs.jpclett.0c02393. Epub 2020 Oct 6.

引用本文的文献

9
Data-Driven Analysis of Hole-Transporting Materials for Perovskite Solar Cells Performance.基于数据驱动的钙钛矿太阳能电池空穴传输材料性能分析
J Phys Chem C Nanomater Interfaces. 2022 Aug 11;126(31):13053-13061. doi: 10.1021/acs.jpcc.2c04725. Epub 2022 Jul 29.
10
Physics-Guided Descriptors for Prediction of Structural Polymorphs.用于预测结构多晶型物的物理引导描述符
J Phys Chem Lett. 2022 Aug 11;13(31):7342-7349. doi: 10.1021/acs.jpclett.2c01876. Epub 2022 Aug 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验