Li Wei, Jacobs Ryan, Morgan Dane
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
Data Brief. 2018 May 8;19:261-263. doi: 10.1016/j.dib.2018.05.007. eCollection 2018 Aug.
To better present the machine learning work and the data used, we prepared a supplemental spreadsheet to organize the full training dataset prepared from DFT calculations, the individual elemental properties, the generated element-based descriptors derived from the elements present in each perovskite composition, and lists of the specific features selected and used our machine learning models. We have also provided supplemental information which contains additional details related to our machine learning models which were not provided in the main text (Li et al., In press) [1]. In particular, the supplemental information provides results on training and testing five regression models (using the same data and descriptors as the regression of in main text) to predict the formation energies of perovskite oxides. We provided source code that trains the machine learning models on the provided training dataset and predicts the stability for the test data.
为了更好地展示机器学习工作及所使用的数据,我们准备了一个补充电子表格,用于整理从密度泛函理论(DFT)计算制备的完整训练数据集、单个元素属性、从每种钙钛矿组成中的元素衍生出的基于元素的描述符,以及所选并用于我们机器学习模型的特定特征列表。我们还提供了补充信息,其中包含与我们机器学习模型相关的其他详细信息,这些信息在正文(Li等人,即将发表)[1]中未给出。特别是,补充信息提供了训练和测试五个回归模型(使用与正文回归相同的数据和描述符)以预测钙钛矿氧化物形成能的结果。我们提供了在给定训练数据集上训练机器学习模型并预测测试数据稳定性的源代码。