Suppr超能文献

神经单神经元:利用有向生成网络在少量标签限制下进行学习。

Neural Simpletrons: Learning in the Limit of Few Labels with Directed Generative Networks.

作者信息

Forster Dennis, Sheikh Abdul-Saboor, Lücke Jörg

机构信息

Machine Learning Group, Department for Medical Physics and Acoustics, Carl-von-Ossietzky University Oldenburg, 26129 Oldenburg, Germany, and Frankfurt Institute for Advanced Studies, Goethe-University Frankfurt am Main, 60438 Frankfurt am Main, Germany

Zalando Research, Zalando SE, 11501 Berlin, Germany, and Machine Learning Group and Cluster of Excellence Hearing4all, Department for Medical Physics and Acoustics, Carl-von-Ossietzky University Oldenburg, 26129 Oldenburg, Germany

出版信息

Neural Comput. 2018 Aug;30(8):2113-2174. doi: 10.1162/neco_a_01100. Epub 2018 Jun 12.

Abstract

We explore classifier training for data sets with very few labels. We investigate this task using a neural network for nonnegative data. The network is derived from a hierarchical normalized Poisson mixture model with one observed and two hidden layers. With the single objective of likelihood optimization, both labeled and unlabeled data are naturally incorporated into learning. The neural activation and learning equations resulting from our derivation are concise and local. As a consequence, the network can be scaled using standard deep learning tools for parallelized GPU implementation. Using standard benchmarks for nonnegative data, such as text document representations, MNIST, and NIST SD19, we study the classification performance when very few labels are used for training. In different settings, the network's performance is compared to standard and recently suggested semisupervised classifiers. While other recent approaches are more competitive for many labels or fully labeled data sets, we find that the network studied here can be applied to numbers of few labels where no other system has been reported to operate so far.

摘要

我们探索针对标签极少的数据集的分类器训练。我们使用一个用于非负数据的神经网络来研究此任务。该网络源自一个具有一层观测层和两层隐藏层的分层归一化泊松混合模型。在似然优化这一单一目标下,有标签和无标签数据都自然地融入到学习过程中。我们推导得出的神经激活和学习方程简洁且具有局部性。因此,该网络可以使用标准的深度学习工具进行扩展,以实现并行化的GPU实现。使用针对非负数据的标准基准测试,如文本文档表示、MNIST和NIST SD19,我们研究了在使用极少标签进行训练时的分类性能。在不同设置下,将该网络的性能与标准的和最近提出的半监督分类器进行比较。虽然其他近期方法在处理许多标签或完全有标签的数据集时更具竞争力,但我们发现这里研究的网络可应用于标签极少的情况,而目前尚无其他系统在这种情况下被报道能运行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验