Suppr超能文献

乙酰胆碱和多巴胺信号模型对神经表征的改善各有不同。

Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations.

作者信息

Holca-Lamarre Raphaël, Lücke Jörg, Obermayer Klaus

机构信息

Neural Information Processing Group, Fakultät IV, Technische Universität BerlinBerlin, Germany.

Bernstein Center for Computational NeuroscienceBerlin, Germany.

出版信息

Front Comput Neurosci. 2017 Jun 22;11:54. doi: 10.3389/fncom.2017.00054. eCollection 2017.

Abstract

Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates.

摘要

生物神经网络和人工神经网络(ANNs)将输入信号表示为神经活动模式。在生物学中,神经调质可以触发这些神经表征的重要重组。例如,将刺激与乙酰胆碱(ACh)或多巴胺(DA)的释放配对,会引起神经元对配对刺激的反应持续增加。ACh和DA在重新排列表征中的功能作用在很大程度上仍然未知。在这里,我们使用赫布学习神经网络模型来解决这个问题。我们的目标既是为了从功能上理解ACh和DA在塑造生物表征中的传递,也是为了探索受神经调质启发的ANN学习规则。我们对ACh和DA对突触可塑性的影响进行建模,并证实与更大神经调质激活同时出现的刺激在网络中被过度表征。然后,我们模拟ACh和DA的生理释放时间表。我们测量神经调质释放对网络表征及其在分类任务中的性能的影响。我们发现,ACh和DA会触发神经表征的不同变化,这两种变化都会提高性能。假定的ACh信号重新分配神经偏好,以便更多神经元对网络来说具有挑战性的刺激类别进行编码。假定的DA信号调整突触权重,使其更好地匹配手头任务的类别。因此,我们的模型为ACh和DA对皮层表征的影响提供了功能解释。此外,我们的学习算法在多层感知器中产生的性能与最先进的优化方法相当,同时需要较弱的监督信号,并与突触局部权重更新相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/210c/5479899/6ba405831edd/fncom-11-00054-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验