Baldridge Kevin C, Edmonds Kearstin, Dziubla Thomas, Hilt J Zach, Dutch Rebecca E, Bhattacharyya Dibakar
Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States.
Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40508, United States.
ACS ES T Eng. 2022 Feb 11;2(2):251-262. doi: 10.1021/acsestengg.1c00369. Epub 2022 Jan 11.
Reduction of airborne viral particles in enclosed spaces is critical in controlling pandemics. Three different hollow fiber membrane (HFM) modules were investigated for viral aerosol separation in enclosed spaces. Pore structures were characterized by scanning electron microscopy, and air transport properties were measured. Particle removal efficiency was characterized using aerosols generated by a collision atomizer from a defined mixture of synthetic nanoparticles including SARS-CoV-2 mimics (protein-coated 100 nm polystyrene). HFM1 (polyvinylidene fluoride, 50-1300 nm pores) demonstrated 96.5-100% efficiency for aerosols in the size range of 0.3-3 m at a flow rate of 18.6 ± 0.3 SLPM (1650 LMH), whereas HFM2 (polypropylene, 40 nm pores) and HFM3 (hydrophilized polyether sulfone, ~140-750 nm pores) demonstrated 99.65-100% and 98.8-100% efficiency at flow rates of 19.7 ± 0.3 SLPM (820 LMH) and 19.4 ± 0.2 SLPM (~4455 LMH), respectively. Additionally, lasting filtration with minimal fouling was demonstrated using ambient aerosols over 2 days. Finally, each module was evaluated with pseudovirus (vesicular stomatitis virus) aerosol, demonstrating 99.3% (HFM1), >99.8% (HFM2), and >99.8% (HFM3) reduction in active pseudovirus titer as a direct measure of viral particle removal. These results quantified the aerosol separation efficiency of HFMs and highlight the need for further development of this technology to aid the fight against airborne viruses and particulate matter concerning human health.
减少封闭空间中的空气传播病毒颗粒对于控制大流行至关重要。研究了三种不同的中空纤维膜(HFM)模块用于封闭空间中的病毒气溶胶分离。通过扫描电子显微镜表征孔结构,并测量空气传输特性。使用碰撞雾化器从包括SARS-CoV-2模拟物(蛋白包被的100 nm聚苯乙烯)的合成纳米颗粒的定义混合物中产生的气溶胶来表征颗粒去除效率。HFM1(聚偏二氟乙烯,孔径约50 - 1300 nm)在流速为18.6 ± 0.3 SLPM(约1650 LMH)时,对0.3 - 3μm尺寸范围内的气溶胶显示出96.5 - 100%的效率,而HFM2(聚丙烯,孔径约40 nm)和HFM3(亲水聚醚砜,孔径约140 - 750 nm)在流速分别为19.7 ± 0.3 SLPM(约820 LMH)和19.4 ± 0.2 SLPM(约4455 LMH)时,显示出99.65 - 100%和98.8 - 100%的效率。此外,使用环境气溶胶在2天内证明了持续过滤且污垢最小。最后,用假病毒(水泡性口炎病毒)气溶胶对每个模块进行评估,作为病毒颗粒去除的直接测量,显示活性假病毒滴度分别降低了99.3%(HFM1)、>99.8%(HFM2)和>99.8%(HFM3)。这些结果量化了HFMs的气溶胶分离效率,并突出了进一步开发该技术以帮助对抗与人类健康相关的空气传播病毒和颗粒物的必要性。