Suppr超能文献

网络匹配在预测乒乓球比赛中的作用。

The role of the network of matches on predicting success in table tennis.

机构信息

a Computer Science Department , University of Torino , Torino , Italy.

b Departamento de Sistemas Informàticos y Computación , Universitat Politécnica de València , València , Spain.

出版信息

J Sports Sci. 2018 Dec;36(23):2691-2698. doi: 10.1080/02640414.2018.1482813. Epub 2018 Jun 13.

Abstract

The influence of training, posture, nutrition or psychological attitudes on an athlete's career is well described in literature. An additional factor of success that is widely recognized as crucial is the network of matches that an athlete plays during a season. The hypothesis is that the quality of a player's opponents affects her long-term ranking and performance. Even though the relevance of these factors is widely recognized as important, a quantitative characterization is missing. In this paper, we try to fill this gap combining network analysis and machine learning to estimate the contribution of the network of matches in predicting an athlete's success. We consider all the official games played by the Italian table tennis players between 2011 and 2016. We observe that the matches network shows scale-free behavior, typical of several real-world systems, and that different structural properties are positively correlated with the athletes' performance (Spearman [Formula: see text], p-value [Formula: see text]). Using these findings, we implement three different tasks, such as talent identification, performance and ranking prediction. Results shows consistently that machine learning approaches are able to predict players' success and that the topological features play an effective role in increasing their predictive power.

摘要

训练、姿势、营养或心理态度对运动员职业生涯的影响在文献中有详细描述。另一个被广泛认为至关重要的成功因素是运动员在一个赛季中参加的比赛网络。假设是球员对手的质量会影响她的长期排名和表现。尽管这些因素的相关性被广泛认为很重要,但缺乏定量描述。在本文中,我们尝试通过结合网络分析和机器学习来填补这一空白,以估计比赛网络在预测运动员成功方面的贡献。我们考虑了 2011 年至 2016 年间所有意大利乒乓球运动员参加的官方比赛。我们观察到比赛网络表现出无标度行为,这是几种现实系统的典型特征,并且不同的结构特性与运动员的表现呈正相关(Spearman [公式:见文本],p 值 [公式:见文本])。利用这些发现,我们实现了三个不同的任务,如人才识别、表现和排名预测。结果一致表明,机器学习方法能够预测运动员的成功,并且拓扑特征在提高其预测能力方面发挥了有效作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验