Suppr超能文献

使用 SHAP 和混合 LSTM-BPNN 算法对精英男性乒乓球比赛进行诊断。

Elite male table tennis matches diagnosis using SHAP and a hybrid LSTM-BPNN algorithm.

机构信息

College of Physical Education and Sports, Beijing Normal University, Beijing, 100084, China.

School of Physical Education, Jilin University, Jilin, 130015, China.

出版信息

Sci Rep. 2023 Jul 17;13(1):11533. doi: 10.1038/s41598-023-37746-1.

Abstract

This study adopts a new approach, SHapley Additive exPlanation (SHAP), to diagnose the table tennis matches based on a hybrid algorithm, namely Long Short-Term Memory-Back Propagation Neural Network (LSTM-BPNN). 100 male singles competitions (8535 rallies) from 2019 to 2022 are analyzed by a hybrid technical-tactical analysis theory, which hybridizes the double three-phase and four-phase evaluation theories. A k-means cluster analysis is conducted to classify 59 players' winning rates into three levels (high, medium, and low). The results show that LSTM-BPNN has excellent performance (MSE = 0.000355, MAE = 0.014237, RMSE = 0.018853, and [Formula: see text] = 0.988311) compared with six typical artificial intelligence algorithms. Using LSTM-BPNN to calculate the SHAP value of each feature, the global results find that the receive-attack and serve-attack phases of the ending match have essential impacts on the mutual winning probabilities. Finally, case applications show that the SHAP can directly obtain each feature importance on one or more matches, which is more objective and reliable than the traditional simulation method. This research explores an innovative way to understand and analyze matches, and these results have implications for the performance analysis of table tennis and related racket sports.

摘要

本研究采用一种新方法,即 Shapley 加法解释(SHAP),基于混合算法(即长短期记忆-反向传播神经网络(LSTM-BPNN))对乒乓球比赛进行诊断。通过混合技术战术分析理论,即混合双三相和四相评估理论,对 2019 年至 2022 年的 100 名男单比赛(8535 个回合)进行了分析。采用 k-均值聚类分析将 59 名运动员的胜率分为三个等级(高、中、低)。结果表明,LSTM-BPNN 与六种典型人工智能算法相比具有优异的性能(MSE=0.000355、MAE=0.014237、RMSE=0.018853 和 [Formula: see text]=0.988311)。通过 LSTM-BPNN 计算每个特征的 SHAP 值,全局结果发现,决胜局的接发球和发球进攻阶段对相互胜负概率有重要影响。最后,案例应用表明,SHAP 可以直接在一场或多场比赛中获得每个特征的重要性,这比传统的模拟方法更客观可靠。本研究探索了一种理解和分析比赛的创新方法,这些结果对乒乓球和相关球拍运动的表现分析具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b9f/10352295/5a843b0cb97d/41598_2023_37746_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验