Suppr超能文献

基于互作网络的随机游走重启动方法鉴定药物-靶标相互作用。

Identification of drug-target interaction by a random walk with restart method on an interactome network.

机构信息

School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju, 500-712, Republic of Korea.

出版信息

BMC Bioinformatics. 2018 Jun 13;19(Suppl 8):208. doi: 10.1186/s12859-018-2199-x.

Abstract

BACKGROUND

Identification of drug-target interactions acts as a key role in drug discovery. However, identifying drug-target interactions via in-vitro, in-vivo experiments are very laborious, time-consuming. Thus, predicting drug-target interactions by using computational approaches is a good alternative. In recent studies, many feature-based and similarity-based machine learning approaches have shown promising results in drug-target interaction predictions. A previous study showed that accounting connectivity information of drug-drug and protein-protein interactions increase performances of prediction by the concept of 'guilt-by-association'. However, the approach that only considers directly connected nodes often misses the information that could be derived from distance nodes. Therefore, in this study, we yield global network topology information by using a random walk with restart algorithm and apply the global topology information to the prediction model.

RESULTS

As a result, our prediction model demonstrates increased prediction performance compare to the 'guilt-by-association' approach (AUC 0.89 and 0.67 in the training and independent test, respectively). In addition, we show how weighted features by a random walk with restart yields better performances than original features. Also, we confirmed that drugs and proteins that have high-degree of connectivity on the interactome network yield better performance in our model.

CONCLUSIONS

The prediction models with weighted features by considering global network topology increased the prediction performances both in the training and testing compared to non-weighted models and previous a 'guilt-by-association method'. In conclusion, global network topology information on protein-protein interaction and drug-drug interaction effects to the prediction performance of drug-target interactions.

摘要

背景

鉴定药物-靶点相互作用在药物发现中起着关键作用。然而,通过体外、体内实验鉴定药物-靶点相互作用非常费力且耗时。因此,通过计算方法预测药物-靶点相互作用是一种很好的替代方法。在最近的研究中,许多基于特征和基于相似性的机器学习方法在药物-靶点相互作用预测中显示出了有希望的结果。先前的一项研究表明,通过“关联即罪恶”的概念,考虑药物-药物和蛋白质-蛋白质相互作用的连接信息可以提高预测性能。然而,仅考虑直接连接节点的方法经常会错过可以从距离节点推导出来的信息。因此,在这项研究中,我们通过随机游走重新启动算法生成全局网络拓扑信息,并将全局拓扑信息应用于预测模型。

结果

我们的预测模型与“关联即罪恶”方法相比,展示出了更高的预测性能(在训练和独立测试中 AUC 分别为 0.89 和 0.67)。此外,我们展示了通过随机游走重新启动加权特征如何比原始特征产生更好的性能。此外,我们还证实了在相互作用网络上具有高连接度的药物和蛋白质在我们的模型中具有更好的性能。

结论

与非加权模型和先前的“关联即罪恶”方法相比,考虑全局网络拓扑的加权特征预测模型在训练和测试中都提高了预测性能。总之,蛋白质-蛋白质相互作用和药物-药物相互作用的全局网络拓扑信息对药物-靶点相互作用的预测性能有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b81/5998759/54baed735557/12859_2018_2199_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验