Choi Kwanyong, Kim Ji Yeon
Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-Ro, Nowon-Gu, Seoul, 01811 Republic of Korea.
Food Sci Biotechnol. 2024 Sep 9;34(2):299-305. doi: 10.1007/s10068-024-01701-1. eCollection 2025 Jan.
Despite the increasing global demand for functional foods, the challenges associated with bioactive natural food products due to their complex composition remain. Bioactive natural products can potentially interfere with physiological activity regulation and lead to undesired side effects. This finding emphasizes the need for machine learning (ML)-based food safety predictions focused on intrinsic toxicity. This review explores various strategies involved in current methods of model selection and validation techniques used in predictive analysis, highlighting their strengths, limitations, and progress. Future studies should focus on testing compound combinations using top-down or bottom-up approaches with appropriate models to advance in silico toxicity modeling of bioactive natural products.
尽管全球对功能性食品的需求不断增加,但由于生物活性天然食品成分复杂,与之相关的挑战依然存在。生物活性天然产品可能会干扰生理活动调节并导致不良副作用。这一发现强调了基于机器学习(ML)的食品安全预测对于内在毒性的必要性。本综述探讨了预测分析中当前模型选择方法和验证技术所涉及的各种策略,突出了它们的优势、局限性和进展。未来的研究应集中于使用自上而下或自下而上的方法以及适当的模型来测试化合物组合,以推进生物活性天然产品的计算机毒性建模。