Suppr超能文献

从加纳当地社区的疟原虫恶性疟原虫中多样化、重组的抗原变异基因中鉴定功能基团。

Identifying functional groups among the diverse, recombining antigenic var genes of the malaria parasite Plasmodium falciparum from a local community in Ghana.

机构信息

Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States of America.

Department of Biology, University of Utah, Salt Lake City, UT, United States of America.

出版信息

PLoS Comput Biol. 2018 Jun 13;14(6):e1006174. doi: 10.1371/journal.pcbi.1006174. eCollection 2018 Jun.

Abstract

A challenge in studying diverse multi-copy gene families is deciphering distinct functional types within immense sequence variation. Functional changes can in some cases be tracked through the evolutionary history of a gene family; however phylogenetic approaches are not possible in cases where gene families diversify primarily by recombination. We take a network theoretical approach to functionally classify the highly recombining var antigenic gene family of the malaria parasite Plasmodium falciparum. We sample var DBLα sequence types from a local population in Ghana, and classify 9,276 of these variants into just 48 functional types. Our approach is to first decompose each sequence type into its constituent, recombining parts; we then use a stochastic block model to identify functional groups among the parts; finally, we classify the sequence types based on which functional groups they contain. This method for functional classification does not rely on an inferred phylogenetic history, nor does it rely on inferring function based on conserved sequence features. Instead, it infers functional similarity among recombining parts based on the sharing of similar co-occurrence interactions with other parts. This method can therefore group sequences that have undetectable sequence homology or even distinct origination. Describing these 48 var functional types allows us to simplify the antigenic diversity within our dataset by over two orders of magnitude. We consider how the var functional types are distributed in isolates, and find a nonrandom pattern reflecting that common var functional types are non-randomly distinct from one another in terms of their functional composition. The coarse-graining of var gene diversity into biologically meaningful functional groups has important implications for understanding the disease ecology and evolution of this system, as well as for designing effective epidemiological monitoring and intervention.

摘要

研究多样化的多拷贝基因家族的一个挑战是在巨大的序列变异中破译不同的功能类型。在某些情况下,可以通过基因家族的进化历史来跟踪功能变化;然而,在基因家族主要通过重组多样化的情况下,系统发育方法是不可能的。我们采用网络理论方法对疟原虫恶性疟原虫的高度重组 var 抗原基因家族进行功能分类。我们从加纳的一个当地人群中采样 var DBLα 序列类型,并将其中的 9276 个变体分类为仅 48 种功能类型。我们的方法是首先将每个序列类型分解为其组成的重组部分;然后,我们使用随机块模型来识别部分之间的功能组;最后,我们根据它们包含的功能组对序列类型进行分类。这种功能分类方法不依赖于推断的系统发育历史,也不依赖于基于保守序列特征推断功能。相反,它根据与其他部分共享类似共同发生相互作用的情况,推断重组部分之间的功能相似性。因此,这种方法可以将具有不可检测序列同源性甚至起源不同的序列分组在一起。描述这 48 种 var 功能类型可以使我们简化数据集内的抗原多样性,超过两个数量级。我们考虑了 var 功能类型在分离株中的分布情况,并发现了一种非随机模式,反映了常见的 var 功能类型在功能组成方面彼此之间是非随机区分的。将 var 基因多样性粗化为具有生物学意义的功能组,对于理解该系统的疾病生态学和进化以及设计有效的流行病学监测和干预具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea40/6016947/363de2ea9647/pcbi.1006174.g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验