Department of Chemical Science and U.R. INSTM, University of Padova, Via Marzolo 1, I-35131, Padova, Italy.
Nanoscale. 2018 Jul 5;10(25):11913-11922. doi: 10.1039/c8nr03520b.
Here we present a comprehensive study on the photophysics of QDs-fullerene blends, aiming to elucidate the impact of ligands on the extraction of carriers from QDs. We investigated how three different ligands (oleylamine, octadecanethiol and propanethiol) influence the dynamics of charge generation, separation, and recombination in blends of CdSe/CdS core/shell QDs and PCBM. We accessed each relevant process directly by combining the results from both optical and magnetic spectroscopies. Transient absorption measurements revealed a faster interaction dynamics in thiol-capped ligands. Through phenomenological modeling of the interaction processes, i.e., energy transfer and electron transfer, we estimated the suppression of exciton migration and the enhancement of electron transfer processes when alkyl-thiols are employed as ligands. Contextually, we report the profound impact of the ligands' alkyl chain length, leading to strengthened interactions with PCBM acceptors. Quantitatively, we measured a 10-fold increase in the electron transfer rate when oleylamine ligands were exchanged with propanethiol ligands. EPR spectroscopy gave access to subtle details regarding both the enhanced charge generation and lower binding energy of charge-transfer states in blends compared to PCBM alone. Moreover, through pulsed EPR techniques, we inferred the localization of deep electron traps in localized sites close to QDs in the blends. Therefore, our thorough characterization evidenced the essential role of ligands in determining QD interactions. We believe that these discoveries will contribute to the efficient incorporation of QDs in existing organic PV technologies.
在这里,我们呈现了一项关于 QD-富勒烯混合物的光物理的综合研究,旨在阐明配体对从 QD 中提取载流子的影响。我们研究了三种不同的配体(油胺、十八硫醇和丙硫醇)如何影响 CdSe/CdS 核/壳 QD 和 PCBM 混合物中载流子的产生、分离和复合的动力学。我们通过结合光学和磁光谱学的结果,直接研究了每个相关过程。瞬态吸收测量揭示了硫醇封端配体中更快的相互作用动力学。通过对相互作用过程(即能量转移和电子转移)的唯象建模,我们估计了当使用烷基硫醇作为配体时,激子迁移的抑制和电子转移过程的增强。在上下文中,我们报告了配体的烷基链长的深远影响,导致与 PCBM 受体的相互作用增强。定量地,我们测量了当将油胺配体交换为丙硫醇配体时,电子转移速率增加了 10 倍。电子顺磁共振(EPR)光谱学使我们能够深入了解与 PCBM 相比,混合物中电荷产生增强和电荷转移态结合能降低的细微细节。此外,通过脉冲 EPR 技术,我们推断出在混合物中靠近 QD 的局部位置存在深电子陷阱的定位。因此,我们的全面表征证明了配体在确定 QD 相互作用中的重要作用。我们相信这些发现将有助于将 QD 高效地纳入现有的有机光伏技术中。