Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK.
Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK; Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK.
Lancet. 2018 Jun 23;391(10139):2560-2574. doi: 10.1016/S0140-6736(18)30727-X. Epub 2018 Jun 18.
Mitochondria are dynamic bioenergetic organelles whose maintenance requires around 1500 proteins from two genomes. Mutations in either the mitochondrial or nuclear genome can disrupt a plethora of cellular metabolic and homoeostatic functions. Mitochondrial diseases represent one of the most common and severe groups of inherited genetic disorders, characterised by clinical, biochemical, and genetic heterogeneity, diagnostic odysseys, and absence of disease-modifying curative therapies. This Review aims to discuss recent advances in mitochondrial biology and medicine arising from widespread use of high-throughput omics technologies, and also includes a broad discussion of emerging therapies for mitochondrial disease. New insights into both bioenergetic and biosynthetic mitochondrial functionalities have expedited the genetic diagnosis of primary mitochondrial disorders, and identified novel mitochondrial pathomechanisms and new targets for therapeutic intervention. As we enter this new era of mitochondrial medicine, underpinned by global unbiased approaches and multifaceted investigation of mitochondrial function, omics technologies will continue to shed light on unresolved mitochondrial questions, paving the way for improved outcomes for patients with mitochondrial diseases.
线粒体是动态的生物能量细胞器,其维持需要来自两个基因组的大约 1500 种蛋白质。线粒体或核基因组中的突变都可能破坏大量的细胞代谢和内稳态功能。线粒体疾病是最常见和最严重的遗传性遗传疾病之一,其特征是临床表现、生化和遗传异质性、诊断探索以及缺乏疾病修正治疗。这篇综述旨在讨论广泛使用高通量组学技术所带来的线粒体生物学和医学的最新进展,同时还广泛讨论了线粒体疾病的新兴疗法。对线粒体生物能量和生物合成功能的新见解加速了原发性线粒体疾病的遗传诊断,并确定了新的线粒体病理机制和治疗干预的新靶点。随着我们进入这个由全球无偏方法和线粒体功能的多方面研究为基础的线粒体医学新时代,组学技术将继续揭示未解决的线粒体问题,为线粒体疾病患者带来更好的治疗效果。