Suppr超能文献

通过代谢驱动的氧化还原状态对线粒体网络形态进行主动控制。

Active control of mitochondrial network morphology by metabolism-driven redox state.

作者信息

Singh Gaurav, Vengayil Vineeth, Khanna Aayushee, Adhikary Swagata, Laxman Sunil

机构信息

Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India.

出版信息

Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2421953122. doi: 10.1073/pnas.2421953122. Epub 2025 Apr 17.

Abstract

Mitochondria are dynamic organelles that constantly change morphology. What controls mitochondrial morphology however remains unresolved. Using actively respiring yeast cells growing in distinct carbon sources, we find that mitochondrial morphology and activity are unrelated. Cells can exhibit fragmented or networked mitochondrial morphology in different nutrient environments independent of mitochondrial activity. Instead, mitochondrial morphology is controlled by the intracellular redox state, which itself depends on the nature of electron entry into the electron transport chain (ETC)-through complex I/II or directly to coenzyme Q/cytochrome c. In metabolic conditions where direct electron entry is high, reactive oxygen species (ROS) increase, resulting in an oxidized cytosolic environment and rapid mitochondrial fragmentation. Decreasing direct electron entry into the ETC by genetic or chemical means, or reducing the cytosolic environment rapidly restores networked morphologies. Using controlled disruptions of electron flow to alter ROS and redox state, we demonstrate minute-scale, reversible control between networked and fragmented forms in an activity-independent manner. Mechanistically, the fission machinery through Dnm1 responds in minute-scale to redox state changes, preceding the change in mitochondrial form. Thus, the metabolic state of the cell and its consequent cellular redox state actively control mitochondrial form.

摘要

线粒体是不断改变形态的动态细胞器。然而,是什么控制线粒体形态仍未得到解决。利用在不同碳源中生长的活跃呼吸的酵母细胞,我们发现线粒体形态与活性无关。在不同的营养环境中,细胞可以呈现碎片化或网络化的线粒体形态,而与线粒体活性无关。相反,线粒体形态由细胞内氧化还原状态控制,而细胞内氧化还原状态本身取决于电子进入电子传递链(ETC)的方式——通过复合体I/II或直接到辅酶Q/细胞色素c。在直接电子进入量高的代谢条件下,活性氧(ROS)增加,导致胞质环境氧化并使线粒体迅速碎片化。通过遗传或化学手段减少电子进入ETC,或还原胞质环境,可迅速恢复网络化形态。利用对电子流的可控干扰来改变ROS和氧化还原状态,我们展示了在与活性无关的情况下,网络化和碎片化形式之间的分钟级可逆控制。从机制上讲,通过Dnm1的裂变机制对氧化还原状态变化做出分钟级反应,先于线粒体形态的变化。因此,细胞的代谢状态及其随之产生的细胞氧化还原状态主动控制线粒体形态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b4d/12037031/59aeee60e635/pnas.2421953122fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验