Suppr超能文献

用于增强氮还原的 WO 空心球中的协同空间限制效应和氧空位

Synergistic Spatial Confining Effect and O Vacancy in WO Hollow Sphere for Enhanced N Reduction.

作者信息

Xia Yuzhou, Xia Xinghe, Zhu Shuying, Liang Ruowen, Yan Guiyang, Chen Feng, Wang Xuxu

机构信息

College of Chemistry, Fuzhou University, Fuzhou 350116, China.

Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China.

出版信息

Molecules. 2023 Dec 8;28(24):8013. doi: 10.3390/molecules28248013.

Abstract

Visible-light-driven N reduction into NH in pure HO provides an energy-saving alternative to the Haber-Bosch process for ammonia synthesizing. However, the thermodynamic stability of N≡N and low water solubility of N remain the key bottlenecks. Here, we propose a solution by developing a WO hollow sphere with oxygen vacancies. Experimental analysis reveals that the hollow sphere structure greatly promotes the enrichment of N molecules in the inner cavity and facilitates the chemisorption of N onto WO-HS. The outer layer's thin shell facilitates the photogenerated charge transfer and the full exposure of O vacancies as active sites. O vacancies exposed on the surface accelerate the activation of N≡N triple bonds. As such, the optimized catalyst shows a NH generation rate of 140.08 μmol g h, which is 7.94 times higher than the counterpart WO-bulk.

摘要

在纯水中,可见光驱动的氮还原为氨为合成氨的哈伯-博施法提供了一种节能替代方案。然而,N≡N的热力学稳定性和氮在水中的低溶解度仍然是关键瓶颈。在此,我们通过开发具有氧空位的WO中空球提出了一种解决方案。实验分析表明,中空球结构极大地促进了氮分子在内腔中的富集,并有利于氮在WO-HS上的化学吸附。外层的薄壳促进了光生电荷转移以及作为活性位点的氧空位的充分暴露。表面暴露的氧空位加速了N≡N三键的活化。因此,优化后的催化剂显示出140.08 μmol g h的氨生成速率,这比块状WO高出7.94倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6fb/10745342/6626836f99ce/molecules-28-08013-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验