Opt Lett. 2018 Jun 15;43(12):2752-2755. doi: 10.1364/OL.43.002752.
An end-to-end deep neural network, ResU-net, is developed for quantitative photoacoustic imaging. A residual learning framework is used to facilitate optimization and to gain better accuracy from considerably increased network depth. The contracting and expanding paths enable ResU-net to extract comprehensive context information from multispectral initial pressure images and, subsequently, to infer a quantitative image of chromophore concentration or oxygen saturation (sO). According to our numerical experiments, the estimations of sO and indocyanine green concentration are accurate and robust against variations in both optical property and object geometry. An extremely short reconstruction time of 22 ms is achieved.
本文提出了一种用于定量光声成像的端到端深度神经网络 ResU-net。该网络使用残差学习框架来促进优化,并从显著增加的网络深度中获得更好的准确性。收缩和扩展路径使 ResU-net 能够从多光谱初始压力图像中提取全面的上下文信息,进而推断出关于发色团浓度或氧饱和度(sO)的定量图像。根据我们的数值实验,sO 和吲哚菁绿浓度的估计值在光学特性和物体几何形状的变化下都是准确且稳健的。重建时间极短,仅为 22 ms。