University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom.
University of Cambridge, Department of Physics, Cambridge, United Kingdom.
J Biomed Opt. 2024 Jun;29(Suppl 3):S33303. doi: 10.1117/1.JBO.29.S3.S33303. Epub 2024 Jun 5.
Photoacoustic imaging (PAI) promises to measure spatially resolved blood oxygen saturation but suffers from a lack of accurate and robust spectral unmixing methods to deliver on this promise. Accurate blood oxygenation estimation could have important clinical applications from cancer detection to quantifying inflammation.
We address the inflexibility of existing data-driven methods for estimating blood oxygenation in PAI by introducing a recurrent neural network architecture.
We created 25 simulated training dataset variations to assess neural network performance. We used a long short-term memory network to implement a wavelength-flexible network architecture and proposed the Jensen-Shannon divergence to predict the most suitable training dataset.
The network architecture can flexibly handle the input wavelengths and outperforms linear unmixing and the previously proposed learned spectral decoloring method. Small changes in the training data significantly affect the accuracy of our method, but we find that the Jensen-Shannon divergence correlates with the estimation error and is thus suitable for predicting the most appropriate training datasets for any given application.
A flexible data-driven network architecture combined with the Jensen-Shannon divergence to predict the best training data set provides a promising direction that might enable robust data-driven photoacoustic oximetry for clinical use cases.
光声成象(PAI)有望测量空间分辨血氧饱和度,但缺乏准确和稳健的光谱解混方法来实现这一承诺。准确的血氧估计在癌症检测到炎症定量等方面具有重要的临床应用。
我们通过引入递归神经网络架构来解决 PAI 中估计血氧的现有数据驱动方法的不灵活性。
我们创建了 25 个模拟训练数据集变化来评估神经网络的性能。我们使用长短期记忆网络来实现波长灵活的网络架构,并提出 Jensen-Shannon 散度来预测最合适的训练数据集。
该网络架构可以灵活地处理输入波长,并优于线性解混和以前提出的学习光谱去色方法。训练数据的微小变化会显著影响我们方法的准确性,但我们发现 Jensen-Shannon 散度与估计误差相关,因此适合预测任何给定应用的最合适的训练数据集。
结合 Jensen-Shannon 散度来预测最佳训练数据集的灵活数据驱动网络架构为临床应用中稳健的数据驱动光声血氧计提供了一个有希望的方向。