Bhowmick Asmit, Simon Philipp S, Bogacz Isabel, Hussein Rana, Zhang Miao, Makita Hiroki, Ibrahim Mohamed, Chatterjee Ruchira, Doyle Margaret D, Cheah Mun Hon, Chernev Petko, Fuller Franklin D, Fransson Thomas, Alonso-Mori Roberto, Brewster Aaron S, Sauter Nicholas K, Bergmann Uwe, Dobbek Holger, Zouni Athina, Messinger Johannes, Kern Jan, Yachandra Vittal K, Yano Junko
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Department of Biology, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.
IUCrJ. 2023 Nov 1;10(Pt 6):642-655. doi: 10.1107/S2052252523008928.
The water oxidation reaction in photosystem II (PS II) produces most of the molecular oxygen in the atmosphere, which sustains life on Earth, and in this process releases four electrons and four protons that drive the downstream process of CO fixation in the photosynthetic apparatus. The catalytic center of PS II is an oxygen-bridged MnCa complex (MnCaO) which is progressively oxidized upon the absorption of light by the chlorophyll of the PS II reaction center, and the accumulation of four oxidative equivalents in the catalytic center results in the oxidation of two waters to dioxygen in the last step. The recent emergence of X-ray free-electron lasers (XFELs) with intense femtosecond X-ray pulses has opened up opportunities to visualize this reaction in PS II as it proceeds through the catalytic cycle. In this review, we summarize our recent studies of the catalytic reaction in PS II by following the structural changes along the reaction pathway via room-temperature X-ray crystallography using XFELs. The evolution of the electron density changes at the Mn complex reveals notable structural changes, including the insertion of O from a new water molecule, which disappears on completion of the reaction, implicating it in the O-O bond formation reaction. We were also able to follow the structural dynamics of the protein coordinating with the catalytic complex and of channels within the protein that are important for substrate and product transport, revealing well orchestrated conformational changes in response to the electronic changes at the MnCa cluster.
光系统II(PS II)中的水氧化反应产生了大气中大部分的分子氧,维持着地球上的生命,并且在这个过程中释放出四个电子和四个质子,驱动光合装置中二氧化碳固定的下游过程。PS II的催化中心是一个氧桥联的锰钙复合物(MnCaO),它在PS II反应中心的叶绿素吸收光后逐渐被氧化,催化中心中四个氧化当量的积累导致最后一步中两个水分子被氧化成二氧。最近出现的具有强飞秒X射线脉冲的X射线自由电子激光(XFEL)为在PS II通过催化循环进行反应时可视化该反应提供了机会。在这篇综述中,我们总结了我们最近通过使用XFEL的室温X射线晶体学沿着反应途径追踪结构变化来研究PS II中催化反应的情况。锰复合物处电子密度变化的演变揭示了显著的结构变化,包括来自一个新水分子的氧的插入,该水分子在反应完成时消失,表明它参与了氧-氧键形成反应。我们还能够追踪与催化复合物配位的蛋白质以及蛋白质内对底物和产物运输很重要的通道的结构动力学,揭示了响应于MnCa簇处的电子变化而精心编排的构象变化。