Suppr超能文献

用于国家决策制定的 COVID-19 疫苗有效性的病例对照研究的偏倚评估。

Bias assessment of a test-negative design study of COVID-19 vaccine effectiveness used in national policymaking.

机构信息

London School of Hygiene and Tropical Medicine, London, UK.

UK Health Security Agency, London, UK.

出版信息

Nat Commun. 2023 Jul 6;14(1):3984. doi: 10.1038/s41467-023-39674-0.

Abstract

National test-negative-case-control (TNCC) studies are used to monitor COVID-19 vaccine effectiveness in the UK. A questionnaire was sent to participants from the first published TNCC COVID-19 vaccine effectiveness study conducted by the UK Health Security Agency, to assess for potential biases and changes in behaviour related to vaccination. The original study included symptomatic adults aged ≥70 years testing for COVID-19 between 08/12/2020 and 21/02/2021. A questionnaire was sent to cases and controls tested from 1-21 February 2021. In this study, 8648 individuals responded to the questionnaire (36.5% response). Using information from the questionnaire to produce a combined estimate that accounted for all potential biases decreased the original vaccine effectiveness estimate after two doses of BNT162b2 from 88% (95% CI: 79-94%) to 85% (95% CI: 68-94%). Self-reported behaviour demonstrated minimal evidence of riskier behaviour after vaccination. These findings offer reassurance to policy makers and clinicians making decisions based on COVID-19 vaccine effectiveness TNCC studies.

摘要

国家阴性对照病例对照(TNCC)研究用于监测英国 COVID-19 疫苗的有效性。我们向英国卫生安全局首次发表的 COVID-19 疫苗有效性 TNCC 研究的参与者发送了一份调查问卷,以评估与疫苗接种相关的潜在偏差和行为变化。原始研究包括 2020 年 12 月 8 日至 2021 年 2 月 21 日期间≥70 岁的有症状成年人进行 COVID-19 检测。调查问卷是在 2021 年 2 月 1 日至 21 日期间对病例和对照进行检测后发送的。在这项研究中,8648 人对问卷做出了回应(回应率为 36.5%)。使用问卷中的信息生成一个综合估计值,该估计值考虑了所有潜在的偏差,使 BNT162b2 两剂疫苗的原始有效性估计值从 88%(95%CI:79-94%)降低至 85%(95%CI:68-94%)。自我报告的行为表明,接种疫苗后风险行为的证据很少。这些发现为决策者和临床医生提供了保证,使他们能够根据 COVID-19 疫苗有效性 TNCC 研究做出决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d32e/10325974/9d61f69ef246/41467_2023_39674_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验