Suppr超能文献

一种用于卷积结构化低秩矩阵恢复的快速算法。

A Fast Algorithm for Convolutional Structured Low-rank Matrix Recovery.

作者信息

Ongie Greg, Jacob Mathews

机构信息

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109.

Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52245 USA.

出版信息

IEEE Trans Comput Imaging. 2017 Dec;3(4):535-550. doi: 10.1109/TCI.2017.2721819. Epub 2017 Jan 30.

Abstract

Fourier domain structured low-rank matrix priors are emerging as powerful alternatives to traditional image recovery methods such as total variation (TV) and wavelet regularization. These priors specify that a convolutional structured matrix, i.e., Toeplitz, Hankel, or their multi-level generalizations, built from Fourier data of the image should be low-rank. The main challenge in applying these schemes to large-scale problems is the computational complexity and memory demand resulting from a lifting the image data to a large scale matrix. We introduce a fast and memory efficient approach called the Generic Iterative Reweighted Annihilation Filter (GIRAF) algorithm that exploits the convolutional structure of the lifted matrix to work in the original un-lifted domain, thus considerably reducing the complexity. Our experiments on the recovery of images from undersampled Fourier measurements show that the resulting algorithm is considerably faster than previously proposed algorithms, and can accommodate much larger problem sizes than previously studied.

摘要

傅里叶域结构化低秩矩阵先验正逐渐成为传统图像恢复方法(如图像的总变差(TV)和小波正则化)的有力替代方案。这些先验规定,由图像的傅里叶数据构建的卷积结构化矩阵,即托普利兹矩阵、汉克尔矩阵或其多级推广形式,应该是低秩的。将这些方案应用于大规模问题的主要挑战在于,将图像数据提升为大规模矩阵会导致计算复杂度和内存需求增加。我们引入了一种快速且内存高效的方法,称为通用迭代重加权消除滤波器(GIRAF)算法,该算法利用提升矩阵的卷积结构在原始未提升域中工作,从而大大降低了复杂度。我们对从欠采样傅里叶测量中恢复图像的实验表明,所得算法比先前提出的算法快得多,并且能够处理比先前研究中更大的问题规模。

相似文献

1
A Fast Algorithm for Convolutional Structured Low-rank Matrix Recovery.一种用于卷积结构化低秩矩阵恢复的快速算法。
IEEE Trans Comput Imaging. 2017 Dec;3(4):535-550. doi: 10.1109/TCI.2017.2721819. Epub 2017 Jan 30.
5
ADAPTIVE STRUCTURED LOW RANK ALGORITHM FOR MR IMAGE RECOVERY.用于磁共振图像恢复的自适应结构化低秩算法
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1260-1263. doi: 10.1109/isbi.2018.8363800. Epub 2018 May 24.
6
Recovery of Damped Exponentials Using Structured Low Rank Matrix Completion.使用结构化低秩矩阵补全恢复阻尼指数
IEEE Trans Med Imaging. 2017 Oct;36(10):2087-2098. doi: 10.1109/TMI.2017.2726995. Epub 2017 Jul 14.

引用本文的文献

4
CONVOLUTIONAL FRAMEWORK FOR ACCELERATED MAGNETIC RESONANCE IMAGING.用于加速磁共振成像的卷积框架
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1065-1068. doi: 10.1109/isbi45749.2020.9098393. Epub 2020 May 22.
5
Autoregression and Structured Low-Rank Modeling of Sinogram Neighborhoods.正弦图邻域的自回归与结构化低秩建模
IEEE Trans Comput Imaging. 2021;7:1044-1054. doi: 10.1109/tci.2021.3114994. Epub 2021 Sep 24.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验