Poddar Sunrita, Mohsin Yasir Q, Ansah Deidra, Thattaliyath Bijoy, Ashwath Ravi, Jacob Mathews
IEEE Trans Comput Imaging. 2019 Sep;5(3):478-491. doi: 10.1109/tci.2019.2893598. Epub 2019 Jan 24.
We introduce a novel kernel low-rank algorithm to recover free-breathing and ungated dynamic MRI data from highly undersampled measurements. The image frames in the free breathing and ungated dataset are assumed to be points on a bandlimited manifold. We show that the non-linear features of these images satisfy annihilation conditions, which implies that the kernel matrix derived from the dataset is low-rank. We penalize the nuclear norm of the feature matrix to recover the images from highly undersampled measurements. The regularized optimization problem is solved using an iterative reweighted least squares (IRLS) algorithm, which alternates between the update of the Laplacian matrix of the manifold and the recovery of the signals from the noisy measurements. To improve computational efficiency, we use a two step algorithm using navigator measurements. Specifically, the Laplacian matrix is estimated from the navigators using the IRLS scheme, followed by the recovery of the images using a quadratic optimization. We show the relation of this two step algorithm with our recent SToRM approach, thus reconciling SToRM and manifold regularization methods with algorithms that rely on explicit lifting of data to a high dimensional space. The IRLS based estimation of the Laplacian matrix is a systematic and noise-robust alternative to current heuristic strategies based on exponential maps. We also approximate the Laplacian matrix using a few eigen vectors, which results in a fast and memory efficient algorithm. The proposed scheme is demonstrated on several patients with different breathing patterns and cardiac rates.
我们引入了一种新颖的核低秩算法,用于从高度欠采样的测量中恢复自由呼吸和非门控动态磁共振成像(MRI)数据。自由呼吸和非门控数据集中的图像帧被假定为带限流形上的点。我们表明这些图像的非线性特征满足湮灭条件,这意味着从数据集中导出的核矩阵是低秩的。我们通过惩罚特征矩阵的核范数,从高度欠采样的测量中恢复图像。使用迭代重加权最小二乘(IRLS)算法来解决正则化优化问题,该算法在流形的拉普拉斯矩阵更新与从噪声测量中恢复信号之间交替进行。为了提高计算效率,我们使用一种利用导航测量的两步算法。具体来说,使用IRLS方案从导航器估计拉普拉斯矩阵,随后通过二次优化恢复图像。我们展示了这种两步算法与我们最近的SToRM方法之间的关系,从而将SToRM和流形正则化方法与依赖于将数据显式提升到高维空间的算法协调起来。基于IRLS的拉普拉斯矩阵估计是一种系统且抗噪声的替代当前基于指数映射的启发式策略的方法。我们还使用几个特征向量近似拉普拉斯矩阵,这产生了一种快速且内存高效的算法。所提出的方案在具有不同呼吸模式和心率的几位患者身上得到了验证。