Suppr超能文献

使用核低秩正则化的流形恢复:在动态成像中的应用

Manifold recovery using kernel low-rank regularization: application to dynamic imaging.

作者信息

Poddar Sunrita, Mohsin Yasir Q, Ansah Deidra, Thattaliyath Bijoy, Ashwath Ravi, Jacob Mathews

出版信息

IEEE Trans Comput Imaging. 2019 Sep;5(3):478-491. doi: 10.1109/tci.2019.2893598. Epub 2019 Jan 24.

Abstract

We introduce a novel kernel low-rank algorithm to recover free-breathing and ungated dynamic MRI data from highly undersampled measurements. The image frames in the free breathing and ungated dataset are assumed to be points on a bandlimited manifold. We show that the non-linear features of these images satisfy annihilation conditions, which implies that the kernel matrix derived from the dataset is low-rank. We penalize the nuclear norm of the feature matrix to recover the images from highly undersampled measurements. The regularized optimization problem is solved using an iterative reweighted least squares (IRLS) algorithm, which alternates between the update of the Laplacian matrix of the manifold and the recovery of the signals from the noisy measurements. To improve computational efficiency, we use a two step algorithm using navigator measurements. Specifically, the Laplacian matrix is estimated from the navigators using the IRLS scheme, followed by the recovery of the images using a quadratic optimization. We show the relation of this two step algorithm with our recent SToRM approach, thus reconciling SToRM and manifold regularization methods with algorithms that rely on explicit lifting of data to a high dimensional space. The IRLS based estimation of the Laplacian matrix is a systematic and noise-robust alternative to current heuristic strategies based on exponential maps. We also approximate the Laplacian matrix using a few eigen vectors, which results in a fast and memory efficient algorithm. The proposed scheme is demonstrated on several patients with different breathing patterns and cardiac rates.

摘要

我们引入了一种新颖的核低秩算法,用于从高度欠采样的测量中恢复自由呼吸和非门控动态磁共振成像(MRI)数据。自由呼吸和非门控数据集中的图像帧被假定为带限流形上的点。我们表明这些图像的非线性特征满足湮灭条件,这意味着从数据集中导出的核矩阵是低秩的。我们通过惩罚特征矩阵的核范数,从高度欠采样的测量中恢复图像。使用迭代重加权最小二乘(IRLS)算法来解决正则化优化问题,该算法在流形的拉普拉斯矩阵更新与从噪声测量中恢复信号之间交替进行。为了提高计算效率,我们使用一种利用导航测量的两步算法。具体来说,使用IRLS方案从导航器估计拉普拉斯矩阵,随后通过二次优化恢复图像。我们展示了这种两步算法与我们最近的SToRM方法之间的关系,从而将SToRM和流形正则化方法与依赖于将数据显式提升到高维空间的算法协调起来。基于IRLS的拉普拉斯矩阵估计是一种系统且抗噪声的替代当前基于指数映射的启发式策略的方法。我们还使用几个特征向量近似拉普拉斯矩阵,这产生了一种快速且内存高效的算法。所提出的方案在具有不同呼吸模式和心率的几位患者身上得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f5/7990121/b408fe4d7fed/nihms-1537347-f0001.jpg

相似文献

2
Free-Breathing & Ungated Cardiac MRI Using Iterative SToRM (i-SToRM).自由呼吸和非门控心脏 MRI 使用迭代 SToRM(i-SToRM)。
IEEE Trans Med Imaging. 2019 Oct;38(10):2303-2313. doi: 10.1109/TMI.2019.2908140. Epub 2019 Mar 28.
3
Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM).基于流形平滑正则化的动态磁共振成像(SToRM)。
IEEE Trans Med Imaging. 2016 Apr;35(4):1106-15. doi: 10.1109/TMI.2015.2509245. Epub 2015 Dec 17.
4
Free-Breathing and Ungated Dynamic MRI Using Navigator-Less Spiral SToRM.无导航螺旋 SToRM 自由呼吸门控动态 MRI
IEEE Trans Med Imaging. 2020 Dec;39(12):3933-3943. doi: 10.1109/TMI.2020.3008329. Epub 2020 Nov 30.
5
RECOVERY OF POINT CLOUDS ON SURFACES: APPLICATION TO IMAGE RECONSTRUCTION.曲面上点云的恢复:在图像重建中的应用
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1272-1275. doi: 10.1109/isbi.2018.8363803. Epub 2018 May 24.
6
RECOVERY OF NOISY POINTS ON BANDLIMITED SURFACES: KERNEL METHODS RE-EXPLAINED.带限曲面上噪声点的恢复:核方法再解释
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:4024-4028. doi: 10.1109/icassp.2018.8462186. Epub 2018 Sep 13.
8
Dynamic Imaging Using a Deep Generative SToRM (Gen-SToRM) Model.基于深度生成式 SToRM(Gen-SToRM)模型的动态成像。
IEEE Trans Med Imaging. 2021 Nov;40(11):3102-3112. doi: 10.1109/TMI.2021.3065948. Epub 2021 Oct 27.
9
Laplacian embedded regression for scalable manifold regularization.拉普拉斯嵌入回归的可扩展流形正则化。
IEEE Trans Neural Netw Learn Syst. 2012 Jun;23(6):902-15. doi: 10.1109/TNNLS.2012.2190420.
10
DEEP GENERATIVE STORM MODEL FOR DYNAMIC IMAGING.用于动态成像的深度生成风暴模型
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433839. Epub 2021 Mar 25.

引用本文的文献

2
Deep learning for accelerated and robust MRI reconstruction.深度学习在加速和稳健 MRI 重建中的应用。
MAGMA. 2024 Jul;37(3):335-368. doi: 10.1007/s10334-024-01173-8. Epub 2024 Jul 23.
5
Dynamic Imaging Using Deep Bi-Linear Unsupervised Representation (DEBLUR).基于深度双线性无监督表示的动态成像(DEBLUR)。
IEEE Trans Med Imaging. 2022 Oct;41(10):2693-2703. doi: 10.1109/TMI.2022.3168559. Epub 2022 Sep 30.
6
DEEP GENERATIVE STORM MODEL FOR DYNAMIC IMAGING.用于动态成像的深度生成风暴模型
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433839. Epub 2021 Mar 25.
8
Dynamic Imaging Using a Deep Generative SToRM (Gen-SToRM) Model.基于深度生成式 SToRM(Gen-SToRM)模型的动态成像。
IEEE Trans Med Imaging. 2021 Nov;40(11):3102-3112. doi: 10.1109/TMI.2021.3065948. Epub 2021 Oct 27.
9
DYNAMIC MRI USING DEEP MANIFOLD SELF-LEARNING.使用深度流形自学习的动态磁共振成像
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1052-1055. doi: 10.1109/isbi45749.2020.9098382. Epub 2020 May 22.

本文引用的文献

1
RECOVERY OF POINT CLOUDS ON SURFACES: APPLICATION TO IMAGE RECONSTRUCTION.曲面上点云的恢复:在图像重建中的应用
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1272-1275. doi: 10.1109/isbi.2018.8363803. Epub 2018 May 24.
2
RECOVERY OF NOISY POINTS ON BANDLIMITED SURFACES: KERNEL METHODS RE-EXPLAINED.带限曲面上噪声点的恢复:核方法再解释
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:4024-4028. doi: 10.1109/icassp.2018.8462186. Epub 2018 Sep 13.
5
A Fast Algorithm for Convolutional Structured Low-rank Matrix Recovery.一种用于卷积结构化低秩矩阵恢复的快速算法。
IEEE Trans Comput Imaging. 2017 Dec;3(4):535-550. doi: 10.1109/TCI.2017.2721819. Epub 2017 Jan 30.
10
Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM).基于流形平滑正则化的动态磁共振成像(SToRM)。
IEEE Trans Med Imaging. 2016 Apr;35(4):1106-15. doi: 10.1109/TMI.2015.2509245. Epub 2015 Dec 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验