Suppr超能文献

从少量傅里叶样本中进行离网分段常数图像恢复

Off-the-Grid Recovery of Piecewise Constant Images from Few Fourier Samples.

作者信息

Ongie Greg, Jacob Mathews

机构信息

Department of Mathematics, University of Iowa, Iowa City, Iowa.

Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa.

出版信息

SIAM J Imaging Sci. 2016;9(3):1004-1041. doi: 10.1137/15M1042280. Epub 2016 Jul 21.

Abstract

We introduce a method to recover a continuous domain representation of a piecewise constant two-dimensional image from few low-pass Fourier samples. Assuming the edge set of the image is localized to the zero set of a trigonometric polynomial, we show the Fourier coefficients of the partial derivatives of the image satisfy a linear annihilation relation. We present necessary and sufficient conditions for unique recovery of the image from finite low-pass Fourier samples using the annihilation relation. We also propose a practical two-stage recovery algorithm which is robust to model-mismatch and noise. In the first stage we estimate a continuous domain representation of the edge set of the image. In the second stage we perform an extrapolation in Fourier domain by a least squares two-dimensional linear prediction, which recovers the exact Fourier coefficients of the underlying image. We demonstrate our algorithm on the super-resolution recovery of MRI phantoms and real MRI data from low-pass Fourier samples, which shows benefits over standard approaches for single-image super-resolution MRI.

摘要

我们介绍了一种从少量低通傅里叶样本中恢复分段常数二维图像连续域表示的方法。假设图像的边缘集位于三角多项式的零集上,我们证明图像偏导数的傅里叶系数满足线性消去关系。我们给出了使用消去关系从有限低通傅里叶样本中唯一恢复图像的充分必要条件。我们还提出了一种实用的两阶段恢复算法,该算法对模型不匹配和噪声具有鲁棒性。在第一阶段,我们估计图像边缘集的连续域表示。在第二阶段,我们通过最小二乘二维线性预测在傅里叶域中进行外推,从而恢复基础图像的精确傅里叶系数。我们在从低通傅里叶样本进行MRI体模和真实MRI数据的超分辨率恢复上演示了我们的算法,这显示出优于单图像超分辨率MRI的标准方法的优势。

相似文献

1
Off-the-Grid Recovery of Piecewise Constant Images from Few Fourier Samples.
SIAM J Imaging Sci. 2016;9(3):1004-1041. doi: 10.1137/15M1042280. Epub 2016 Jul 21.
2
Convex recovery of continuous domain piecewise constant images from nonuniform Fourier samples.
IEEE Trans Signal Process. 2018 Jan;66(1):236-250. doi: 10.1109/TSP.2017.2750111. Epub 2017 Sep 7.
3
STRUCTURED LOW-RANK RECOVERY OF PIECEWISE CONSTANT SIGNALS WITH PERFORMANCE GUARANTEES.
Proc Int Conf Image Proc. 2016 Sep;2016:963-967. doi: 10.1109/icip.2016.7532500. Epub 2016 Aug 19.
4
ADAPTIVE STRUCTURED LOW RANK ALGORITHM FOR MR IMAGE RECOVERY.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1260-1263. doi: 10.1109/isbi.2018.8363800. Epub 2018 May 24.
5
Robust FFT-based scale-invariant image registration with image gradients.
IEEE Trans Pattern Anal Mach Intell. 2010 Oct;32(10):1899-1906. doi: 10.1109/TPAMI.2010.107.
6
Ellipse Recovery From Blurred Binary Images.
IEEE Trans Image Process. 2021;30:2697-2707. doi: 10.1109/TIP.2020.3026866. Epub 2021 Feb 10.
7
RECOVERY OF POINT CLOUDS ON SURFACES: APPLICATION TO IMAGE RECONSTRUCTION.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1272-1275. doi: 10.1109/isbi.2018.8363803. Epub 2018 May 24.
8
Noise Robust Face Image Super-Resolution Through Smooth Sparse Representation.
IEEE Trans Cybern. 2017 Nov;47(11):3991-4002. doi: 10.1109/TCYB.2016.2594184. Epub 2016 Aug 26.
9
10
Iterative image-domain decomposition for dual-energy CT.
Med Phys. 2014 Apr;41(4):041901. doi: 10.1118/1.4866386.

引用本文的文献

1
Scan-Specific Self-Supervised Bayesian Deep Non-Linear Inversion for Undersampled MRI Reconstruction.
IEEE Trans Med Imaging. 2024 Jun;43(6):2358-2369. doi: 10.1109/TMI.2024.3364911. Epub 2024 Jun 5.
2
New Theory and Faster Computations for Subspace-Based Sensitivity Map Estimation in Multichannel MRI.
IEEE Trans Med Imaging. 2024 Jan;43(1):286-296. doi: 10.1109/TMI.2023.3297851. Epub 2024 Jan 2.
3
On Ambiguity in Linear Inverse Problems: Entrywise Bounds on Nearly Data-Consistent Solutions and Entrywise Condition Numbers.
IEEE Trans Signal Process. 2023;71:1083-1092. doi: 10.1109/tsp.2023.3257989. Epub 2023 Mar 16.
4
Single breath-hold CINE imaging with combined simultaneous multislice and region-optimized virtual coils.
Magn Reson Med. 2023 Jul;90(1):222-230. doi: 10.1002/mrm.29620. Epub 2023 Mar 2.
5
Wave-Encoded Model-Based Deep Learning for Highly Accelerated Imaging with Joint Reconstruction.
Bioengineering (Basel). 2022 Nov 29;9(12):736. doi: 10.3390/bioengineering9120736.
6
A review and experimental evaluation of deep learning methods for MRI reconstruction.
J Mach Learn Biomed Imaging. 2022 Mar;1. Epub 2022 Mar 11.
7
Research on Several Key Problems of Medical Image Segmentation and Virtual Surgery.
Contrast Media Mol Imaging. 2022 Apr 11;2022:3463358. doi: 10.1155/2022/3463358. eCollection 2022.
8
On the shape of convolution kernels in MRI reconstruction: Rectangles versus ellipsoids.
Magn Reson Med. 2022 Jun;87(6):2989-2996. doi: 10.1002/mrm.29189. Epub 2022 Feb 24.
9
Autoregression and Structured Low-Rank Modeling of Sinogram Neighborhoods.
IEEE Trans Comput Imaging. 2021;7:1044-1054. doi: 10.1109/tci.2021.3114994. Epub 2021 Sep 24.
10
Structured Low-Rank Algorithms: Theory, Magnetic Resonance Applications, and Links to Machine Learning.
IEEE Signal Process Mag. 2020 Jan;37(1):54-68. doi: 10.1109/msp.2019.2950432. Epub 2020 Jan 17.

本文引用的文献

1
PROMISE: parallel-imaging and compressed-sensing reconstruction of multicontrast imaging using SharablE information.
Magn Reson Med. 2015 Feb;73(2):523-35. doi: 10.1002/mrm.25142. Epub 2014 Feb 25.
2
Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained MRI.
IEEE Trans Med Imaging. 2014 Mar;33(3):668-81. doi: 10.1109/TMI.2013.2293974.
3
Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion.
Magn Reson Med. 2014 Oct;72(4):959-70. doi: 10.1002/mrm.24997. Epub 2013 Nov 18.
4
Coil compression for accelerated imaging with Cartesian sampling.
Magn Reson Med. 2013 Feb;69(2):571-82. doi: 10.1002/mrm.24267. Epub 2012 Apr 9.
5
MRI reconstruction from 2D truncated k-space.
J Magn Reson Imaging. 2012 May;35(5):1196-206. doi: 10.1002/jmri.23538. Epub 2011 Dec 16.
6
Realistic analytical phantoms for parallel magnetic resonance imaging.
IEEE Trans Med Imaging. 2012 Mar;31(3):626-36. doi: 10.1109/TMI.2011.2174158. Epub 2011 Oct 28.
7
MODEL-BASED IMAGE RECONSTRUCTION FOR MRI.
IEEE Signal Process Mag. 2010 Jul 1;27(4):81-89. doi: 10.1109/MSP.2010.936726.
8
Robust reconstruction of MRSI data using a sparse spectral model and high resolution MRI priors.
IEEE Trans Med Imaging. 2010 Jun;29(6):1297-309. doi: 10.1109/TMI.2010.2046673. Epub 2010 Apr 1.
9
3D level set reconstruction of model and experimental data in Diffuse Optical Tomography.
Opt Express. 2010 Jan 4;18(1):150-64. doi: 10.1364/OE.18.000150.
10
Anatomically constrained reconstruction from noisy data.
Magn Reson Med. 2008 Apr;59(4):810-8. doi: 10.1002/mrm.21536.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验