Jonas Felix R H, Royle Kate E, Aw Rochelle, Stan Guy-Bart V, Polizzi Karen M
Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom.
Imperial College Centre for Synthetic Biology, London, SW7 2AZ, United Kingdom.
Synth Syst Biotechnol. 2018 Jan 17;3(1):64-75. doi: 10.1016/j.synbio.2018.01.001. eCollection 2018 Mar.
Adaptation allows organisms to maintain a constant internal environment, which is optimised for growth. The unfolded protein response (UPR) is an example of a feedback loop that maintains endoplasmic reticulum (ER) homeostasis, and is characteristic of how adaptation is often mediated by transcriptional networks. The more recent discovery of asymmetric division in maintaining ER homeostasis, however, is an example of how alternative non-transcriptional pathways can exist, but are overlooked by gold standard transcriptomic or proteomic population-based assays. In this study, we have used a combination of fluorescent reporters, flow cytometry and mathematical modelling to explore the relative roles of asymmetric cell division and the UPR in maintaining ER homeostasis. Under low ER stress, asymmetric division leaves daughter cells with an ER deficiency, necessitating activation of the UPR and prolonged cell cycle during which they can recover ER functionality before growth. Mathematical analysis of and simulation results from our mathematical model reinforce the experimental observations that low ER stress primarily impacts the growth rate of the daughter cells. These results demonstrate the interplay between homeostatic pathways and the importance of exploring sub-population dynamics to understand population adaptation to quantitatively different stresses.
适应性使生物体能够维持一个恒定的内部环境,该环境针对生长进行了优化。未折叠蛋白反应(UPR)是维持内质网(ER)稳态的反馈回路的一个例子,它体现了适应性通常如何由转录网络介导。然而,最近发现的不对称分裂在维持内质网稳态中的作用,是一个存在替代性非转录途径但被基于群体的金标准转录组学或蛋白质组学检测所忽视的例子。在这项研究中,我们结合使用荧光报告基因、流式细胞术和数学建模,来探究不对称细胞分裂和未折叠蛋白反应在维持内质网稳态中的相对作用。在低内质网应激条件下,不对称分裂使子细胞出现内质网缺陷,这就需要激活未折叠蛋白反应并延长细胞周期,在此期间子细胞可以在生长之前恢复内质网功能。我们数学模型的数学分析和模拟结果强化了实验观察结果,即低内质网应激主要影响子细胞的生长速率。这些结果证明了稳态途径之间的相互作用,以及探索亚群动态以理解群体对不同程度应激的适应性的重要性。