Bioinformatics and Computational Biology Division, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon 97239, USA.
Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA.
Genome Res. 2018 Jul;28(7):983-997. doi: 10.1101/gr.233874.117. Epub 2018 Jun 18.
The relationship between evolutionary genome remodeling and the three-dimensional structure of the genome remain largely unexplored. Here, we use the heavily rearranged gibbon genome to examine how evolutionary chromosomal rearrangements impact genome-wide chromatin interactions, topologically associating domains (TADs), and their epigenetic landscape. We use high-resolution maps of gibbon-human breaks of synteny (BOS), apply Hi-C in gibbon, measure an array of epigenetic features, and perform cross-species comparisons. We find that gibbon rearrangements occur at TAD boundaries, independent of the parameters used to identify TADs. This overlap is supported by a remarkable genetic and epigenetic similarity between BOS and TAD boundaries, namely presence of CpG islands and SINE elements, and enrichment in CTCF and H3K4me3 binding. Cross-species comparisons reveal that regions orthologous to BOS also correspond with boundaries of large (400-600 kb) TADs in human and other mammalian species. The colocalization of rearrangement breakpoints and TAD boundaries may be due to higher chromatin fragility at these locations and/or increased selective pressure against rearrangements that disrupt TAD integrity. We also examine the small portion of BOS that did not overlap with TAD boundaries and gave rise to novel TADs in the gibbon genome. We postulate that these new TADs generally lack deleterious consequences. Last, we show that limited epigenetic homogenization occurs across breakpoints, irrespective of their time of occurrence in the gibbon lineage. Overall, our findings demonstrate remarkable conservation of chromatin interactions and epigenetic landscape in gibbons, in spite of extensive genomic shuffling.
进化基因组重排与基因组三维结构之间的关系在很大程度上仍未得到探索。在这里,我们使用高度重排的长臂猿基因组来研究进化过程中的染色体重排如何影响全基因组染色质相互作用、拓扑关联域(TAD)及其表观遗传景观。我们使用长臂猿-人类同源序列断裂(BOS)的高分辨率图谱,在长臂猿中进行 Hi-C 实验,测量一系列表观遗传特征,并进行种间比较。我们发现长臂猿的重排发生在 TAD 边界处,与用于识别 TAD 的参数无关。BOS 与 TAD 边界之间存在着惊人的遗传和表观遗传相似性,即 CpG 岛和 SINE 元件的存在,以及 CTCF 和 H3K4me3 结合的富集,这为这种重叠提供了支持。种间比较表明,与 BOS 同源的区域也与人类和其他哺乳动物物种中大型(400-600kb)TAD 的边界相对应。重排断点和 TAD 边界的共定位可能是由于这些位置的染色质更脆弱,或者是由于破坏 TAD 完整性的重排受到更大的选择压力。我们还研究了那些与 TAD 边界不重叠的 BOS 区域,并在长臂猿基因组中产生了新的 TAD。我们推测这些新的 TAD 通常没有有害的后果。最后,我们表明,无论在长臂猿谱系中发生的时间如何,断点处的有限表观遗传同质化都会发生。总的来说,尽管基因组发生了广泛的重排,但我们的研究结果表明长臂猿的染色质相互作用和表观遗传景观具有显著的保守性。