Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
eNeuro. 2024 Aug 19;11(8). doi: 10.1523/ENEURO.0115-24.2024. Print 2024 Aug.
The integration of spatial information in the mammalian dentate gyrus (DG) is critical to navigation. Indeed, DG granule cells (DGCs) rely upon finely balanced inhibitory neurotransmission in order to respond appropriately to specific spatial inputs. This inhibition arises from a heterogeneous population of local GABAergic interneurons (INs) that activate both fast, ionotropic GABA receptors (GABAR) and slow, metabotropic GABA receptors (GABAR), respectively. GABARs in turn inhibit pre- and postsynaptic neuronal compartments via temporally long-lasting G-protein-dependent mechanisms. The relative contribution of each IN subtype to network level GABAR signal setting remains unknown. However, within the DG, the somatostatin (SSt) expressing IN subtype is considered crucial in coordinating appropriate feedback inhibition on to DGCs. Therefore, we virally delivered channelrhodopsin 2 to the DG in order to obtain control of this specific SSt IN subpopulation in male and female adult mice. Using a combination of optogenetic activation and pharmacology, we show that SSt INs strongly recruit postsynaptic GABARs to drive greater inhibition in DGCs than GABARs at physiological membrane potentials. Furthermore, we show that in the adult mouse DG, postsynaptic GABAR signaling is predominantly regulated by neuronal GABA uptake and less so by astrocytic mechanisms. Finally, we confirm that activation of SSt INs can also recruit presynaptic GABARs, as has been shown in neocortical circuits. Together, these data reveal that GABAR signaling allows SSt INs to control DG activity and may constitute a key mechanism for gating spatial information flow within hippocampal circuits.
哺乳动物齿状回(DG)中空间信息的整合对于导航至关重要。事实上,DG 颗粒细胞(DGC)依赖于精细平衡的抑制性神经传递,以便对特定的空间输入做出适当的反应。这种抑制来自于异质的局部 GABA 能中间神经元(IN)群体,它们分别激活快速、离子型 GABA 受体(GABAR)和慢速、代谢型 GABA 受体(GABAR)。GABAR 反过来通过时间上持久的 G 蛋白依赖性机制抑制突触前和突触后神经元区室。每个 IN 亚型对网络水平 GABAR 信号设定的相对贡献仍然未知。然而,在 DG 中,表达生长抑素(SSt)的 IN 亚型被认为在协调适当的反馈抑制到 DGC 上是至关重要的。因此,我们通过病毒将通道视紫红质 2 递送到 DG 中,以便在雄性和雌性成年小鼠中获得对这个特定的 SSt IN 亚群的控制。通过光遗传学激活和药理学的结合,我们表明 SSt INs 强烈招募突触后 GABARs,以在 DGC 中驱动比生理膜电位下更强的抑制。此外,我们表明在成年小鼠 DG 中,突触后 GABAR 信号主要受神经元 GABA 摄取调节,而受星形胶质细胞机制调节较少。最后,我们证实激活 SSt INs 也可以招募突触前 GABARs,正如在新皮层电路中所显示的那样。总之,这些数据表明 GABAR 信号允许 SSt INs 控制 DG 活动,并且可能是门控海马回路中空间信息流的关键机制。