Suppr超能文献

骨内局部活体环境中的机械刺激:将器官尺度负载与细胞信号联系起来的计算方法。

Mechanical Stimuli in the Local In Vivo Environment in Bone: Computational Approaches Linking Organ-Scale Loads to Cellular Signals.

机构信息

Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zürich, Switzerland.

出版信息

Curr Osteoporos Rep. 2018 Aug;16(4):395-403. doi: 10.1007/s11914-018-0448-6.

Abstract

PURPOSE OF REVIEW

Connecting organ-scale loads to cellular signals in their local in vivo environment is a current challenge in the field of bone (re)modelling. Understanding this critical missing link would greatly improve our ability to anticipate mechanotransduction during different modes of stimuli and the resultant cellular responses. This review characterises computational approaches that could enable coupling links across the multiple scales of bone.

RECENT FINDINGS

Current approaches using strain and fluid shear stress concepts have begun to link organ-scale loads to cellular signals; however, these approaches fail to capture localised micro-structural heterogeneities. Furthermore, models that incorporate downstream communication from osteocytes to osteoclasts, bone-lining cells and osteoblasts, will help improve the understanding of (re)modelling activities. Incorporating this potentially key information in the local in vivo environment will aid in developing multiscale models of mechanotransduction that can predict or help describe resultant biological events related to bone (re)modelling. Progress towards multiscale determination of the cell mechanical environment from organ-scale loads remains elusive. Construction of organ-, tissue- and cell-scale computational models that include localised environmental variation, strain amplification and intercellular communication mechanisms will ultimately help couple the hierarchal levels of bone.

摘要

目的综述

将器官尺度的负载与局部体内环境中的细胞信号联系起来,是骨(重建)重塑领域的一个当前挑战。理解这一关键缺失环节将极大地提高我们在不同刺激模式下预测机械转导以及由此产生的细胞反应的能力。本综述描述了可以实现跨越多个骨骼尺度的连接的计算方法。

最近的发现

目前使用应变和流体切应力概念的方法已经开始将器官尺度的负载与细胞信号联系起来;然而,这些方法无法捕捉到局部微观结构的异质性。此外,将骨细胞向破骨细胞、骨衬细胞和成骨细胞的下游通讯纳入模型,将有助于提高对(重建)活动的理解。在局部体内环境中纳入这些潜在的关键信息,将有助于开发机械转导的多尺度模型,从而可以预测或有助于描述与骨(重建)相关的生物学事件。从器官尺度的负载向多尺度确定细胞力学环境的进展仍不明确。构建包括局部环境变化、应变放大和细胞间通讯机制的器官、组织和细胞尺度计算模型,最终将有助于连接骨骼的层次结构。

相似文献

4
Diet and Exercise: a Match Made in Bone.饮食与运动:骨骼健康的完美组合
Curr Osteoporos Rep. 2017 Dec;15(6):555-563. doi: 10.1007/s11914-017-0406-8.
6
Mechanobiology of bone tissue.骨组织的机械生物学
Pathol Biol (Paris). 2005 Dec;53(10):576-80. doi: 10.1016/j.patbio.2004.12.005. Epub 2005 Jan 28.
8
The role of osteocytes in bone mechanotransduction.骨细胞在骨力传导中的作用。
Osteoporos Int. 2009 Jun;20(6):1027-31. doi: 10.1007/s00198-009-0858-5.
10
Nitric oxide signaling in mechanical adaptation of bone.一氧化氮在骨机械适应性中的信号传导
Osteoporos Int. 2014 May;25(5):1427-37. doi: 10.1007/s00198-013-2590-4. Epub 2013 Dec 10.

引用本文的文献

6
Culture system for longitudinal monitoring of bone dynamics ex vivo.用于体外长期监测骨动力学的培养系统。
Biotechnol Bioeng. 2025 Jan;122(1):53-68. doi: 10.1002/bit.28848. Epub 2024 Sep 18.
9
Using Finite Element Modeling in Bone Mechanoadaptation.运用有限元模型研究骨骼的力学生物适应性
Curr Osteoporos Rep. 2023 Apr;21(2):105-116. doi: 10.1007/s11914-023-00776-9. Epub 2023 Feb 18.

本文引用的文献

1
Osteocyte calcium signals encode strain magnitude and loading frequency in vivo.成骨细胞钙信号在体内编码应变幅度和加载频率。
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11775-11780. doi: 10.1073/pnas.1707863114. Epub 2017 Oct 19.
2
Bone mechanobiology in mice: toward single-cell in vivo mechanomics.小鼠骨机械生物学:迈向单细胞体内机械组学。
Biomech Model Mechanobiol. 2017 Dec;16(6):2017-2034. doi: 10.1007/s10237-017-0935-1. Epub 2017 Jul 22.
6
Time Dependent Behaviour of Trabecular Bone at Multiple Load Levels.多载荷水平下松质骨的时间依赖性行为
Ann Biomed Eng. 2017 May;45(5):1219-1226. doi: 10.1007/s10439-017-1800-1. Epub 2017 Jan 27.
10
Nonlinear viscoelastic characterization of bovine trabecular bone.牛松质骨的非线性粘弹性特征
Biomech Model Mechanobiol. 2017 Feb;16(1):173-189. doi: 10.1007/s10237-016-0809-y. Epub 2016 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验