School of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , 610500 , China.
Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province , Southwest Petroleum University , Chengdu , 610500 , China.
Langmuir. 2018 Jul 3;34(26):7612-7623. doi: 10.1021/acs.langmuir.8b00722. Epub 2018 Jun 19.
An interface research method based on total internal reflection induced evanescent wave (TIR-EW) is developed to monitor the adsorption behavior of azo dye at the silica-water interface. The monitoring system is constructed by employing silica optical fiber (SOF) as both charged substrate for dye adsorption and light transmission waveguide for evanescent wave production. According to the change of evanescent wave intensity and followed by Beer's law, the methylene blue (MB) adsorption behavior can be real-time monitored at the silica-water interface. Langmuir adsorption model and pseudo-first-order model are applied to obtain the related thermodynamic and kinetic data. The adsorption equilibrium constant ( K) and adsorption free energy (Δ G) of MB at the silica-water interface are determined to be (3.3 ± 0.5) × 10 M and -25.7 ± 1.7 kJ mol. Meanwhile, this method is highlighted to isolate elementary processes of adsorption and desorption under steady-state conditions, and gives adsorption rate constant ( k) and desorption rate constant ( k) of 8585 ± 19.8 min and 0.26 ± 0.0006 min for 15 r/min flow rate. The surface interaction process is revealed and adsorption mechanism is proposed, indicating MB first adsorbed on Si-O sites through electrostatic attraction and then on Si-OH sites through hydrogen bond with increasing MB concentrations. Our findings from this study provided molecular-level interpretation of azo dye adsorption at silica-water interface, and the results provide important insight into how MB adsorption can be controlled at the interface.
基于全内反射诱导消逝波(TIR-EW)的界面研究方法被开发用于监测偶氮染料在二氧化硅-水界面上的吸附行为。该监测系统通过采用二氧化硅光纤(SOF)作为染料吸附的带电基底和用于产生消逝波的光传输波导来构建。根据消逝波强度的变化,并遵循比尔定律,可以实时监测在二氧化硅-水界面上的亚甲蓝(MB)吸附行为。朗缪尔吸附模型和拟一级模型被应用于获得相关的热力学和动力学数据。确定了 MB 在二氧化硅-水界面上的吸附平衡常数( K)和吸附自由能(Δ G)分别为(3.3 ± 0.5)×10 M和-25.7 ± 1.7 kJ mol。同时,该方法突出了在稳态条件下隔离吸附和解吸的基本过程,并给出了在 15 r/min 流速下的吸附速率常数( k)和脱附速率常数( k)分别为 8585 ± 19.8 min 和 0.26 ± 0.0006 min。揭示了表面相互作用过程并提出了吸附机制,表明 MB 首先通过静电吸引吸附在 Si-O 位上,然后随着 MB 浓度的增加,通过氢键吸附在 Si-OH 位上。我们从这项研究中得出的结论为偶氮染料在二氧化硅-水界面上的吸附提供了分子水平的解释,并且结果为如何控制界面上的 MB 吸附提供了重要的见解。