Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA.
South Bay Medical Center, Kaiser Permanente Southern California, Harbor City, California, USA.
Clin Exp Ophthalmol. 2019 Jan;47(1):7-14. doi: 10.1111/ceo.13340. Epub 2018 Jul 4.
Diagnosis codes are inadequate for accurately identifying herpes zoster (HZ) ophthalmicus (HZO). There is significant lack of population-based studies on HZO due to the high expense of manual review of medical records.
To assess whether HZO can be identified from the clinical notes using natural language processing (NLP). To investigate the epidemiology of HZO among HZ population based on the developed approach.
A retrospective cohort analysis.
A total of 49 914 southern California residents aged over 18 years, who had a new diagnosis of HZ.
An NLP-based algorithm was developed and validated with the manually curated validation data set (n = 461). The algorithm was applied on over 1 million clinical notes associated with the study population. HZO versus non-HZO cases were compared by age, sex, race and co-morbidities.
We measured the accuracy of NLP algorithm.
NLP algorithm achieved 95.6% sensitivity and 99.3% specificity. Compared to the diagnosis codes, NLP identified significant more HZO cases among HZ population (13.9% vs. 1.7%). Compared to the non-HZO group, the HZO group was older, had more males, had more Whites and had more outpatient visits.
We developed and validated an automatic method to identify HZO cases with high accuracy. As one of the largest studies on HZO, our finding emphasizes the importance of preventing HZ in the elderly population. This method can be a valuable tool to support population-based studies and clinical care of HZO in the era of big data.
诊断代码不足以准确识别带状疱疹(HZ)眼型(HZO)。由于手动审查病历的费用很高,因此由于缺乏基于人群的 HZO 研究。
评估是否可以使用自然语言处理(NLP)从临床记录中识别 HZO。根据开发的方法调查 HZ 人群中 HZO 的流行病学。
回顾性队列分析。
共有 49914 名年龄在 18 岁以上的南加州居民,他们有新的 HZ 诊断。
开发了一种基于 NLP 的算法,并使用手动整理的验证数据集(n=461)进行了验证。该算法应用于与研究人群相关的超过 100 万份临床记录。通过年龄、性别、种族和合并症比较 HZO 与非 HZO 病例。
我们测量了 NLP 算法的准确性。
NLP 算法的灵敏度为 95.6%,特异性为 99.3%。与诊断代码相比,NLP 在 HZ 人群中识别出更多的 HZO 病例(13.9%比 1.7%)。与非 HZO 组相比,HZO 组年龄较大,男性较多,白人较多,门诊就诊次数较多。
我们开发并验证了一种自动方法,可准确识别 HZO 病例。作为最大的 HZO 研究之一,我们的发现强调了在老年人群中预防 HZ 的重要性。这种方法可以成为大数据时代支持基于人群的 HZO 研究和临床护理的有价值工具。