Suppr超能文献

基于文本的电子健康记录中眼部受累的眼部带状疱疹识别:一项基于人群的研究。

Text-Based Identification of Herpes Zoster Ophthalmicus With Ocular Involvement in the Electronic Health Record: A Population-Based Study.

作者信息

Zheng Chengyi, Sy Lina S, Tanenbaum Hilary, Tian Yun, Luo Yi, Ackerson Bradley, Tseng Hung Fu

机构信息

Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA.

South Bay Medical Center, Kaiser Permanente Southern California, Harbor City, California, USA.

出版信息

Open Forum Infect Dis. 2021 Jan 3;8(2):ofaa652. doi: 10.1093/ofid/ofaa652. eCollection 2021 Feb.

Abstract

BACKGROUND

Diagnosis codes are inadequate for accurately identifying herpes zoster ophthalmicus (HZO). Manual review of medical records is expensive and time-consuming, resulting in a lack of population-based data on HZO.

METHODS

We conducted a retrospective cohort study, including 87 673 patients aged ≥50 years who had a new HZ diagnosis and associated antiviral prescription between 2010 and 2018. We developed and validated an automated natural language processing (NLP) algorithm to identify HZO with ocular involvement (ocular HZO). We compared the characteristics of NLP-identified ocular HZO, nonocular HZO, and non-HZO cases among HZ patients and identified the factors associated with ocular HZO among HZ patients.

RESULTS

The NLP algorithm achieved 94.9% sensitivity and 94.2% specificity in identifying ocular HZO cases. Among 87 673 incident HZ cases, the proportion identified as ocular HZO was 9.0% (n = 7853) by NLP and 2.3% (n = 1988) by codes. In adjusted analyses, older age and male sex were associated with an increased risk of ocular HZO; Hispanic and black race/ethnicity each were associated with a lower risk of ocular HZO compared with non-Hispanic white.

CONCLUSIONS

The NLP algorithm achieved high accuracy and can be used in large population-based studies to identify ocular HZO, avoiding labor-intensive chart review. Age, sex, and race were strongly associated with ocular HZO among HZ patients. We should consider these risk factors when planning for zoster vaccination.

摘要

背景

诊断代码不足以准确识别眼部带状疱疹(HZO)。人工查阅病历成本高且耗时,导致缺乏基于人群的HZO数据。

方法

我们进行了一项回顾性队列研究,纳入了87673名年龄≥50岁、在2010年至2018年间有新的HZ诊断及相关抗病毒处方的患者。我们开发并验证了一种自动化自然语言处理(NLP)算法,以识别伴有眼部受累的HZO(眼部HZO)。我们比较了HZ患者中经NLP识别的眼部HZO、非眼部HZO和非HZ病例的特征,并确定了HZ患者中与眼部HZO相关的因素。

结果

NLP算法在识别眼部HZO病例方面的灵敏度为94.9%,特异度为94.2%。在87673例新发HZ病例中,经NLP识别为眼部HZO的比例为9.0%(n = 7853),经代码识别的比例为2.3%(n = 1988)。在多因素分析中,年龄较大和男性与眼部HZO风险增加相关;与非西班牙裔白人相比,西班牙裔和黑人种族/族裔患眼部HZO的风险均较低。

结论

NLP算法具有较高的准确性,可用于大规模基于人群的研究以识别眼部HZO,避免了劳动强度大的图表审查。年龄、性别和种族与HZ患者的眼部HZO密切相关。在规划带状疱疹疫苗接种时,我们应考虑这些危险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6966/7863871/29dbdb59bd8b/ofaa652_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验