Suppr超能文献

验证出院诊断代码以识别中年及以上成年人中的严重感染。

Validation of discharge diagnosis codes to identify serious infections among middle age and older adults.

机构信息

Department of Health Policy, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

Mid-South Geriatric Research Education and Clinical Center, VA Tennessee Valley Health Care System, Nashville, Tennessee, USA.

出版信息

BMJ Open. 2018 Jun 19;8(6):e020857. doi: 10.1136/bmjopen-2017-020857.

Abstract

OBJECTIVES

Hospitalisations for serious infections are common among middle age and older adults and frequently used as study outcomes. Yet, few studies have evaluated the performance of diagnosis codes to identify serious infections in this population. We sought to determine the positive predictive value (PPV) of diagnosis codes for identifying hospitalisations due to serious infections among middle age and older adults.

SETTING AND PARTICIPANTS

We identified hospitalisations for possible infection among adults >=50 years enrolled in the Tennessee Medicaid healthcare programme (2008-2012) using International Classifications of Diseases, Ninth Revision diagnosis codes for pneumonia, meningitis/encephalitis, bacteraemia/sepsis, cellulitis/soft-tissue infections, endocarditis, pyelonephritis and septic arthritis/osteomyelitis.

DESIGN

Medical records were systematically obtained from hospitals randomly selected from a stratified sampling framework based on geographical region and hospital discharge volume.

MEASURES

Two trained clinical reviewers used a standardised extraction form to abstract information from medical records. Predefined algorithms served as reference to adjudicate confirmed infection-specific hospitalisations. We calculated the PPV of diagnosis codes using confirmed hospitalisations as reference. Sensitivity analyses determined the robustness of the PPV to definitions that required radiological or microbiological confirmation. We also determined inter-rater reliability between reviewers.

RESULTS

The PPV of diagnosis codes for hospitalisations for infection (n=716) was 90.2% (95% CI 87.8% to 92.2%). The PPV was highest for pneumonia (96.5% (95% CI 93.9% to 98.0%)) and cellulitis (91.1% (95% CI 84.7% to 94.9%)), and lowest for meningitis/encephalitis (50.0% (95% CI 23.7% to 76.3%)). The adjudication reliability was excellent (92.7% agreement; first agreement coefficient: 0.91). The overall PPV was lower when requiring microbiological confirmation (45%) and when requiring radiological confirmation for pneumonia (79%).

CONCLUSIONS

Discharge diagnosis codes have a high PPV for identifying hospitalisations for common, serious infections among middle age and older adults. PPV estimates for rare infections were imprecise.

摘要

目的

中老年人因严重感染住院的情况较为常见,常被用作研究结果。然而,很少有研究评估这些诊断代码在该人群中识别严重感染的性能。我们旨在确定诊断代码识别中老年人因严重感染住院的阳性预测值(PPV)。

背景和参与者

我们使用肺炎、脑膜炎/脑炎、菌血症/败血症、蜂窝织炎/软组织感染、心内膜炎、肾盂肾炎和化脓性关节炎/骨髓炎的国际疾病分类第九版诊断代码,从田纳西州医疗补助计划(2008-2012 年)中确定了 50 岁及以上成年人的可能感染住院治疗。

设计

从基于地理位置和医院出院量的分层抽样框架中随机选择医院,从医院获取医疗记录。

措施

两名经过培训的临床审查员使用标准化的提取表格从医疗记录中提取信息。预定义的算法用于裁决确诊的感染特定住院患者。我们使用确诊的住院治疗作为参考来计算诊断代码的阳性预测值(PPV)。敏感性分析确定了需要放射学或微生物学确认的 PPV 定义的稳健性。我们还确定了审查员之间的组内相关系数。

结果

感染住院治疗的诊断代码的阳性预测值(n=716)为 90.2%(95%CI 87.8%至 92.2%)。肺炎(96.5%(95%CI 93.9%至 98.0%))和蜂窝织炎(91.1%(95%CI 84.7%至 94.9%))的阳性预测值最高,而脑膜炎/脑炎(50.0%(95%CI 23.7%至 76.3%))的阳性预测值最低。裁决可靠性很高(92.7%的一致性;第一次一致性系数:0.91)。当需要微生物学确认时(45%)和当需要肺炎的放射学确认时(79%),总体阳性预测值较低。

结论

在中老年人中,出院诊断代码对于识别常见的严重感染住院具有较高的阳性预测值。罕见感染的阳性预测值估计值不够准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac85/6009457/2f0640c6c62a/bmjopen-2017-020857f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验