Suppr超能文献

个体患者数据在网络荟萃分析中的影响:参数估计和模型选择的调查。

The impact of individual patient data in a network meta-analysis: An investigation into parameter estimation and model selection.

机构信息

School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland.

National Centre of Pharmacoeconomics, St. James's Hospital, Dublin 8, Ireland.

出版信息

Res Synth Methods. 2018 Sep;9(3):441-469. doi: 10.1002/jrsm.1305. Epub 2018 Aug 15.

Abstract

The use of individual patient data (IPD) in network meta-analysis (NMA) is becoming increasingly popular. However, as most studies do not report IPD, most NMAs are performed using aggregate data for at least some, if not all, of the studies. We investigate the benefits of including varying proportions of IPD studies in an NMA. Several models have previously been developed for including both aggregate data and IPD in the same NMA. We performed a simulation study based on these models to examine the impact of additional IPD studies on the accuracy and precision of the estimates of both the treatment effect and the covariate effect. We also compared the deviance information criterion (DIC) between models to assess model fit. An increased proportion of IPD resulted in more accurate and precise estimates for most models and datasets. However, the coverage probability sometimes decreased when the model was misspecified. The use of IPD leads to greater differences in DIC, which allows us choose the correct model more often. We analysed a Hepatitis C network consisting of 3 IPD observational studies. The ranking of treatments remained the same for all models and datasets. We observed similar results to the simulation study: The use of IPD leads to differences in DIC and more precise estimates for the covariate effect. However, IPD sometimes increased the posterior SD of the treatment effect estimate, which may indicate between study heterogeneity. We recommend that IPD should be used where possible, especially for assessing model fit.

摘要

在网络荟萃分析(NMA)中使用个体患者数据(IPD)正变得越来越流行。然而,由于大多数研究并未报告 IPD,因此大多数 NMA 都是使用至少部分(如果不是全部)研究的汇总数据进行的。我们研究了在 NMA 中纳入不同比例的 IPD 研究的益处。之前已经开发了几种模型,用于在同一 NMA 中同时纳入汇总数据和 IPD。我们基于这些模型进行了一项模拟研究,以研究在 NMA 中纳入额外的 IPD 研究对治疗效果和协变量效果估计值的准确性和精度的影响。我们还比较了模型之间的偏差信息准则(DIC),以评估模型拟合度。对于大多数模型和数据集,更多的 IPD 比例导致更准确和精确的估计。然而,当模型指定不正确时,覆盖率概率有时会降低。使用 IPD 会导致 DIC 更大的差异,从而使我们更频繁地选择正确的模型。我们分析了一个包含 3 个 IPD 观察性研究的丙型肝炎网络。所有模型和数据集的治疗方案排名都相同。我们观察到与模拟研究类似的结果:使用 IPD 会导致 DIC 差异和协变量效果的估计值更精确。然而,IPD 有时会增加治疗效果估计值的后验 SD,这可能表明存在研究间异质性。我们建议在可能的情况下使用 IPD,特别是用于评估模型拟合度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验