Suppr超能文献

遗传互作效应揭示了常见代谢性疾病风险相关的脂质代谢和炎症通路。

Genetic interaction effects reveal lipid-metabolic and inflammatory pathways underlying common metabolic disease risks.

机构信息

Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA.

出版信息

BMC Med Genomics. 2018 Jun 20;11(1):54. doi: 10.1186/s12920-018-0373-7.

Abstract

BACKGROUND

Common metabolic diseases, including type 2 diabetes, coronary artery disease, and hypertension, arise from disruptions of the body's metabolic homeostasis, with relatively strong contributions from genetic risk factors and substantial comorbidity with obesity. Although genome-wide association studies have revealed many genomic loci robustly associated with these diseases, biological interpretation of such association is challenging because of the difficulty in mapping single-nucleotide polymorphisms (SNPs) onto the underlying causal genes and pathways. Furthermore, common diseases are typically highly polygenic, and conventional single variant-based association testing does not adequately capture potentially important large-scale interaction effects between multiple genetic factors.

METHODS

We analyzed moderately sized case-control data sets for type 2 diabetes, coronary artery disease, and hypertension to characterize the genetic risk factors arising from non-additive, collective interaction effects, using a recently developed algorithm (discrete discriminant analysis). We tested associations of genes and pathways with the disease status while including the cumulative sum of interaction effects between all variants contained in each group.

RESULTS

In contrast to non-interacting SNP mapping, which produced few genome-wide significant loci, our analysis revealed extensive arrays of pathways, many of which are involved in the pathogenesis of these metabolic diseases but have not been directly identified in genetic association studies. They comprised cell stress and apoptotic pathways for insulin-producing β-cells in type 2 diabetes, processes covering different atherosclerotic stages in coronary artery disease, and elements of both type 2 diabetes and coronary artery disease risk factors (cell cycle, apoptosis, and hemostasis) associated with hypertension.

CONCLUSIONS

Our results support the view that non-additive interaction effects significantly enhance the level of common metabolic disease associations and modify their genetic architectures and that many of the expected genetic factors behind metabolic disease risks reside in smaller genotyping samples in the form of interacting groups of SNPs.

摘要

背景

常见代谢性疾病,包括 2 型糖尿病、冠状动脉疾病和高血压,源于机体代谢平衡的破坏,遗传风险因素起到了较强的作用,且与肥胖存在大量共同疾病。尽管全基因组关联研究揭示了许多与这些疾病密切相关的基因组位点,但由于难以将单核苷酸多态性(SNP)映射到潜在的因果基因和途径上,因此对这种关联进行生物学解释具有挑战性。此外,常见疾病通常具有高度多基因性,传统的基于单一变异的关联测试不能充分捕捉多个遗传因素之间潜在的重要大规模相互作用效应。

方法

我们分析了中等规模的 2 型糖尿病、冠状动脉疾病和高血压病例对照数据集,使用最近开发的算法(离散判别分析)来描述由非加性、集体相互作用效应引起的遗传风险因素。我们在包括每个组中包含的所有变异的累积和相互作用效应的情况下,测试了基因和途径与疾病状态的关联。

结果

与非相互作用 SNP 映射相比,我们的分析产生了很少的全基因组显著位点,揭示了广泛的途径阵列,其中许多涉及这些代谢性疾病的发病机制,但在遗传关联研究中没有直接确定。它们包括 2 型糖尿病中胰岛素产生β细胞的细胞应激和凋亡途径、冠状动脉疾病中涵盖不同动脉粥样硬化阶段的过程以及与高血压相关的 2 型糖尿病和冠状动脉疾病风险因素(细胞周期、凋亡和止血)的元素。

结论

我们的结果支持这样一种观点,即非加性相互作用效应显著增强了常见代谢性疾病关联的水平,并改变了它们的遗传结构,而且代谢性疾病风险背后的许多预期遗传因素以相互作用 SNP 组的形式存在于较小的基因分型样本中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1240/6011398/87db09d4816d/12920_2018_373_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验