The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK.
Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxon, OX11 0RD, UK.
BMC Biol. 2018 Jun 21;16(1):70. doi: 10.1186/s12915-018-0530-7.
Recent advances in clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing have led to the use of long single-stranded DNA (lssDNA) molecules for generating conditional mutations. However, there is still limited available data on the efficiency and reliability of this method.
We generated conditional mouse alleles using lssDNA donor templates and performed extensive characterization of the resulting mutations. We observed that the use of lssDNA molecules as donors efficiently yielded founders bearing the conditional allele, with seven out of nine projects giving rise to modified alleles. However, rearranged alleles including nucleotide changes, indels, local rearrangements and additional integrations were also frequently generated by this method. Specifically, we found that alleles containing unexpected point mutations were found in three of the nine projects analyzed. Alleles originating from illegitimate repairs or partial integration of the donor were detected in eight projects. Furthermore, additional integrations of donor molecules were identified in four out of the seven projects analyzed by copy counting. This highlighted the requirement for a thorough allele validation by polymerase chain reaction, sequencing and copy counting of the mice generated through this method. We also demonstrated the feasibility of using lssDNA donors to generate thus far problematic point mutations distant from active CRISPR cutting sites by targeting two distinct genes (Gckr and Rims1). We propose a strategy to perform extensive quality control and validation of both types of mouse models generated using lssDNA donors.
lssDNA donors reproducibly generate conditional alleles and can be used to introduce point mutations away from CRISPR/Cas9 cutting sites in mice. However, our work demonstrates that thorough quality control of new models is essential prior to reliably experimenting with mice generated by this method. These advances in genome editing techniques shift the challenge of mutagenesis from generation to the validation of new mutant models.
最近,簇状规律间隔短回文重复(CRISPR)/CRISPR 相关蛋白 9(Cas9)基因组编辑的进展使得人们可以使用长单链 DNA(lssDNA)分子来产生条件性突变。然而,关于这种方法的效率和可靠性,仍然只有有限的数据。
我们使用 lssDNA 供体模板生成了条件性小鼠等位基因,并对产生的突变进行了广泛的表征。我们观察到,使用 lssDNA 分子作为供体可以有效地产生携带条件性等位基因的供体,在九个项目中有七个产生了修饰的等位基因。然而,这种方法也经常产生包括核苷酸变化、插入缺失、局部重排和额外整合在内的重排等位基因。具体来说,我们发现在所分析的九个项目中有三个项目中发现了含有意外点突变的等位基因。在所分析的八个项目中有八个项目中检测到来自供体的非合法修复或部分整合的等位基因。此外,在所分析的七个项目中的四个项目中通过拷贝数计数鉴定到供体分子的额外整合。这突出表明需要通过聚合酶链反应、测序和拷贝数计数对通过这种方法生成的小鼠进行彻底的等位基因验证。我们还证明了使用 lssDNA 供体生成迄今为止远离活性 CRISPR 切割位点的点突变的可行性,方法是靶向两个不同的基因(Gckr 和 Rims1)。我们提出了一种策略,用于对使用 lssDNA 供体生成的两种类型的小鼠模型进行广泛的质量控制和验证。
lssDNA 供体可重复性地生成条件性等位基因,并可用于在小鼠中引入远离 CRISPR/Cas9 切割位点的点突变。然而,我们的工作表明,在可靠地使用这种方法生成的小鼠进行实验之前,对新模型进行彻底的质量控制是必不可少的。这些基因组编辑技术的进步将突变的挑战从产生转移到了新突变模型的验证。