CSIRO Energy, 1 Technology Court, 4069 Pullenvale, Australia.
J Environ Manage. 2018 Oct 1;223:196-202. doi: 10.1016/j.jenvman.2018.06.038. Epub 2018 Jun 19.
In urban environments airborne particulates (dust) must be managed to ensure that industry and community coexist in a mutually beneficial and sustainable manner. The composition of the dust is a function of the local environment and industry. In general, there is a view by many community members that a significant proportion of inhalable (PM) and respirable (PM) dust in these environments could be coal. Thus there is a need to have an analytical method that provides a quantitative analysis of the amount and size distribution of the different particulates that can be present in air samples. Australia's national research body, the Commonwealth Scientific and Industrial Research Organisation (CSIRO) has developed a Coal Grain Analysis (CGA) system that uses reflected light optical microscopy to provide a unique visual perspective, a qualitative feeling of the sample and quantitative information on the composition and size of the individual particles greater than 1 μm. Furthermore, semi-automated Optical Dust Marker software uses each individual particle's colour reflectance fingerprint to classify that particle. These markers can currently identify coal, combustion chars, iron, quartz/dark minerals, pyrite/bright materials and particulates of organic origin. This paper presents a case study performed using CGA to evaluate the dust composition and proportion of coal and other particulates and also their size distribution in samples collected in an urban area along a coal rail corridor in Newcastle (Australia). In coastal environments a significant proportion of dust can be water soluble (salt) particulates; the proportion of soluble particulates in those samples varied from 46% to 52.3%. The concentration of insoluble particles in samples varied from 5.9 to 15.5 μg m in the PM fraction and from 0.4 to 0.9 μg m in the PM fraction. All samples consisted predominantly of particles of organic origin (mostly plant and insect remains) - 55.3%-85.3% by mass. Dark material particles of mainly inorganic origin (low reflecting material, mainly stone dust, clay, soot, rubber and soil), combustion char and metal particles (rust and iron oxides) were present in lower concentrations - 0.0% to 19.9% by mass. The amount of coal in the water insoluble fraction of the samples ranged from 5.3% to 19.7% by mass with 2.9%-13.5% by mass of coal particles in the thoracic (2.5-10 μm) and 0.3%-1.2% by mass in the respirable (1-2.5 μm) size fraction.
在城市环境中,必须对空气传播的颗粒物(灰尘)进行管理,以确保工业和社区能够以互利和可持续的方式共存。灰尘的成分是当地环境和工业的函数。总的来说,许多社区成员认为,这些环境中可吸入(PM)和可呼吸(PM)粉尘的很大一部分可能是煤。因此,需要有一种分析方法,能够对空气中存在的不同颗粒物的数量和大小分布进行定量分析。澳大利亚的国家研究机构,联邦科学与工业研究组织(CSIRO)开发了一种煤粒分析(CGA)系统,该系统使用反射光光学显微镜提供独特的视觉视角、对样品的定性感觉以及对单个颗粒的组成和大小的定量信息,这些颗粒的直径大于 1μm。此外,半自动化的光学灰尘标记软件使用每个单个颗粒的颜色反射指纹来对该颗粒进行分类。这些标记目前可以识别煤、燃烧炭、铁、石英/深色矿物、黄铁矿/亮色材料和有机来源的颗粒。本文介绍了使用 CGA 进行的案例研究,以评估在新南威尔士州纽卡斯尔(澳大利亚)沿煤炭铁路走廊的城市地区收集的样品中的灰尘成分和煤及其他颗粒物的比例,以及它们的大小分布。在沿海环境中,很大一部分灰尘可能是水溶性(盐)颗粒物;这些样品中可溶性颗粒物的比例从 46%到 52.3%不等。在 PM 部分,不可溶颗粒的浓度从 5.9 到 15.5μg/m 不等,在 PM 部分,浓度从 0.4 到 0.9μg/m 不等。所有样品主要由有机来源的颗粒组成(主要是植物和昆虫残骸)-质量的 55.3%-85.3%。主要由无机来源的深色材料颗粒(低反射材料,主要是石尘、粘土、烟尘、橡胶和土壤)、燃烧炭和金属颗粒(铁锈和氧化铁)的浓度较低-质量的 0.0%至 19.9%。样品中不溶于水的部分的煤含量范围为 5.3%至 19.7%,质量的 2.9%至 13.5%的煤颗粒在胸部(2.5-10μm),质量的 0.3%至 1.2%的煤颗粒在可呼吸(1-2.5μm)部分。