From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
J Biol Chem. 2018 Aug 31;293(35):13364-13376. doi: 10.1074/jbc.RA118.004067. Epub 2018 Jun 21.
Phenylalkylamines, such as the plant compounds ephedrine and pseudoephedrine and the animal neurotransmitters dopamine and adrenaline, compose a large class of natural and synthetic molecules with important physiological functions and pharmaceutically valuable bioactivities. The final steps of ephedrine and pseudoephedrine biosynthesis in members of the plant genus involve -methylation of norephedrine and norpseudoephedrine, respectively. Here, using a plant transcriptome screen, we report the isolation and characterization of an -methyltransferase (NMT) from able to catalyze the formation of (pseudo)ephedrine and other naturally occurring phenylalkylamines, including -methylcathinone and -methyl(pseudo)ephedrine. Phenylalkylamine -methyltransferase (PaNMT) shares substantial amino acid sequence identity with enzymes of the NMT family involved in benzylisoquinoline alkaloid (BIA) metabolism in members of the higher plant order Ranunculales, which includes opium poppy (). PaNMT accepted a broad range of substrates with phenylalkylamine, tryptamine, β-carboline, tetrahydroisoquinoline, and BIA structural scaffolds, which is in contrast to the specificity for BIA substrates of NMT enzymes within the Ranunculales. PaNMT transcript levels were highest in young shoots of , which corresponded to the location of NMT activity yielding (pseudo)ephedrine, -methylcathinone, and -methyl(pseudo)ephedrine, and with accumulation of phenylalkylamines. Co-expression of recombinant genes encoding PaNMT and an ω-transaminase (PP2799) from in enabled the conversion of exogenous ()-phenylacetylcarbinol (PAC) and ()-PAC to ephedrine and pseudoephedrine, respectively. Our work further demonstrates the utility of plant biochemical genomics for the isolation of key enzymes that facilitate microbial engineering for the production of medicinally important metabolites.
苯乙胺类化合物,如植物化合物麻黄碱和伪麻黄碱以及动物神经递质多巴胺和肾上腺素,构成了一大类具有重要生理功能和具有药用价值的生物活性的天然和合成分子。植物属成员中麻黄碱和伪麻黄碱生物合成的最后步骤分别涉及到去甲麻黄碱和去甲伪麻黄碱的 -甲基化。在这里,我们使用植物转录组筛选,报告了能够催化(伪)麻黄碱和其他天然存在的苯乙胺类化合物,包括 -甲基卡他碱和 -甲基(伪)麻黄碱形成的 -甲基转移酶(NMT)的分离和表征。苯乙胺 -甲基转移酶(PaNMT)与参与高等植物毛茛目成员苄基异喹啉生物碱(BIA)代谢的 NMT 家族的酶具有显著的氨基酸序列同一性,毛茛目包括罂粟()。PaNMT 接受了广泛的底物,包括苯乙胺、色胺、β-咔啉、四氢异喹啉和 BIA 结构支架,这与毛茛目中 NMT 酶对 BIA 底物的特异性形成对比。PaNMT 的转录水平在 的幼枝中最高,这与产生(伪)麻黄碱、-甲基卡他碱和 -甲基(伪)麻黄碱的 NMT 活性的位置相对应,并且与苯乙胺类化合物的积累相对应。在 中表达重组基因编码的 PaNMT 和 ω-转氨酶(PP2799)的共表达,使外源性()-苯乙酰甲醇(PAC)和()-PAC 分别转化为麻黄碱和伪麻黄碱。我们的工作进一步证明了植物生物化学基因组学用于分离有助于微生物工程生产药用重要代谢物的关键酶的实用性。