Suppr超能文献

来源于 的 -N- 甲基转移酶能够催化麻黄碱和伪麻黄碱的形成,从而使微生物能够产生苯丙胺类药物。

An -methyltransferase from catalyzing the formation of ephedrine and pseudoephedrine enables microbial phenylalkylamine production.

机构信息

From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.

From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada

出版信息

J Biol Chem. 2018 Aug 31;293(35):13364-13376. doi: 10.1074/jbc.RA118.004067. Epub 2018 Jun 21.

Abstract

Phenylalkylamines, such as the plant compounds ephedrine and pseudoephedrine and the animal neurotransmitters dopamine and adrenaline, compose a large class of natural and synthetic molecules with important physiological functions and pharmaceutically valuable bioactivities. The final steps of ephedrine and pseudoephedrine biosynthesis in members of the plant genus involve -methylation of norephedrine and norpseudoephedrine, respectively. Here, using a plant transcriptome screen, we report the isolation and characterization of an -methyltransferase (NMT) from able to catalyze the formation of (pseudo)ephedrine and other naturally occurring phenylalkylamines, including -methylcathinone and -methyl(pseudo)ephedrine. Phenylalkylamine -methyltransferase (PaNMT) shares substantial amino acid sequence identity with enzymes of the NMT family involved in benzylisoquinoline alkaloid (BIA) metabolism in members of the higher plant order Ranunculales, which includes opium poppy (). PaNMT accepted a broad range of substrates with phenylalkylamine, tryptamine, β-carboline, tetrahydroisoquinoline, and BIA structural scaffolds, which is in contrast to the specificity for BIA substrates of NMT enzymes within the Ranunculales. PaNMT transcript levels were highest in young shoots of , which corresponded to the location of NMT activity yielding (pseudo)ephedrine, -methylcathinone, and -methyl(pseudo)ephedrine, and with accumulation of phenylalkylamines. Co-expression of recombinant genes encoding PaNMT and an ω-transaminase (PP2799) from in enabled the conversion of exogenous ()-phenylacetylcarbinol (PAC) and ()-PAC to ephedrine and pseudoephedrine, respectively. Our work further demonstrates the utility of plant biochemical genomics for the isolation of key enzymes that facilitate microbial engineering for the production of medicinally important metabolites.

摘要

苯乙胺类化合物,如植物化合物麻黄碱和伪麻黄碱以及动物神经递质多巴胺和肾上腺素,构成了一大类具有重要生理功能和具有药用价值的生物活性的天然和合成分子。植物属成员中麻黄碱和伪麻黄碱生物合成的最后步骤分别涉及到去甲麻黄碱和去甲伪麻黄碱的 -甲基化。在这里,我们使用植物转录组筛选,报告了能够催化(伪)麻黄碱和其他天然存在的苯乙胺类化合物,包括 -甲基卡他碱和 -甲基(伪)麻黄碱形成的 -甲基转移酶(NMT)的分离和表征。苯乙胺 -甲基转移酶(PaNMT)与参与高等植物毛茛目成员苄基异喹啉生物碱(BIA)代谢的 NMT 家族的酶具有显著的氨基酸序列同一性,毛茛目包括罂粟()。PaNMT 接受了广泛的底物,包括苯乙胺、色胺、β-咔啉、四氢异喹啉和 BIA 结构支架,这与毛茛目中 NMT 酶对 BIA 底物的特异性形成对比。PaNMT 的转录水平在 的幼枝中最高,这与产生(伪)麻黄碱、-甲基卡他碱和 -甲基(伪)麻黄碱的 NMT 活性的位置相对应,并且与苯乙胺类化合物的积累相对应。在 中表达重组基因编码的 PaNMT 和 ω-转氨酶(PP2799)的共表达,使外源性()-苯乙酰甲醇(PAC)和()-PAC 分别转化为麻黄碱和伪麻黄碱。我们的工作进一步证明了植物生物化学基因组学用于分离有助于微生物工程生产药用重要代谢物的关键酶的实用性。

相似文献

1
An -methyltransferase from catalyzing the formation of ephedrine and pseudoephedrine enables microbial phenylalkylamine production.
J Biol Chem. 2018 Aug 31;293(35):13364-13376. doi: 10.1074/jbc.RA118.004067. Epub 2018 Jun 21.
2
Composition and stereochemistry of ephedrine alkaloids accumulation in Ephedra sinica Stapf.
Phytochemistry. 2010 Jun;71(8-9):895-903. doi: 10.1016/j.phytochem.2010.03.019. Epub 2010 Apr 24.
5
Characterization of aromatic aminotransferases from Ephedra sinica Stapf.
Amino Acids. 2016 May;48(5):1209-20. doi: 10.1007/s00726-015-2156-1. Epub 2016 Feb 1.
10
[Transcriptome characterization of Ephedra sinica with 454 ESTs].
Zhongguo Zhong Yao Za Zhi. 2016 Nov;41(22):4158-4164. doi: 10.4268/cjcmm20162212.

引用本文的文献

1
Biosynthesis of Ephedrine Initiated by Pyridoxal Phosphate-Dependent Formation of Cathinone.
Chembiochem. 2025 Jul 18;26(14):e202500279. doi: 10.1002/cbic.202500279. Epub 2025 Jun 23.
2
Biosynthesis of Diverse Ephedra-Type Alkaloids via a Newly Identified Enzymatic Cascade.
Biodes Res. 2024 Sep 3;6:0048. doi: 10.34133/bdr.0048. eCollection 2024.
3
Effects of congeners of amphetamine on the human heart.
Naunyn Schmiedebergs Arch Pharmacol. 2024 Jul;397(7):4615-4642. doi: 10.1007/s00210-024-02983-2. Epub 2024 Feb 10.
4
Functional Diversification and Structural Origins of Plant Natural Product Methyltransferases.
Molecules. 2022 Dec 21;28(1):43. doi: 10.3390/molecules28010043.
6
Interpol review of controlled substances 2016-2019.
Forensic Sci Int Synerg. 2020 May 24;2:608-669. doi: 10.1016/j.fsisyn.2020.01.019. eCollection 2020.
7
Advanced Strategies for Production of Natural Products in Yeast.
iScience. 2020 Mar 27;23(3):100879. doi: 10.1016/j.isci.2020.100879. Epub 2020 Feb 1.
8
Molecular Origins of Functional Diversity in Benzylisoquinoline Alkaloid Methyltransferases.
Front Plant Sci. 2019 Aug 30;10:1058. doi: 10.3389/fpls.2019.01058. eCollection 2019.
10
Engineering Plant Secondary Metabolism in Microbial Systems.
Plant Physiol. 2019 Mar;179(3):844-861. doi: 10.1104/pp.18.01291. Epub 2019 Jan 14.

本文引用的文献

2
Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology.
Front Pharmacol. 2016 Oct 18;7:340. doi: 10.3389/fphar.2016.00340. eCollection 2016.
3
Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes.
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10613-8. doi: 10.1073/pnas.1602575113.
6
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
Mol Biol Evol. 2016 Jul;33(7):1870-4. doi: 10.1093/molbev/msw054. Epub 2016 Mar 22.
7
Monoamine neurotransmitter disorders--clinical advances and future perspectives.
Nat Rev Neurol. 2015 Oct;11(10):567-84. doi: 10.1038/nrneurol.2015.172. Epub 2015 Sep 22.
8
Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants.
BMC Plant Biol. 2015 Sep 18;15:227. doi: 10.1186/s12870-015-0596-0.
10
The many different faces of major depression: it is time for personalized medicine.
Eur J Pharmacol. 2015 Apr 15;753:88-104. doi: 10.1016/j.ejphar.2014.11.045. Epub 2015 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验