Suppr超能文献

用于高度取向液晶材料的纳米划痕技术

Nanoscratching technique for highly oriented liquid crystal materials.

作者信息

Suh Ahram, Yoon Dong Ki

机构信息

Graduate School of Nanoscience and Technology, KAIST, Daejeon, 34141, Republic of Korea.

Department of Chemistry and KINC, KAIST, Daejeon, 34141, Republic of Korea.

出版信息

Sci Rep. 2018 Jun 21;8(1):9460. doi: 10.1038/s41598-018-27887-z.

Abstract

A simple, fast, and cost-effective technique to obtain highly oriented thermotropic and lyotropic liquid crystal (LC) phases using a simple nanoscratching method is presented. Highly aligned linear nanogrooves are fabricated by scratching substrates such as normal, indium tin oxide (ITO), curved glasses, and ITO-coated polyethylene terephthalate (PET) film using diamond lapping films. To demonstrate the feasibility of the platform, typical thermotropic and lyotropic LC materials in the nematic phase are used to demonstrate the well-aligned domains along with the resulting scratched nanogrooves. The polarised optical microscopy (POM) images show excellent dark and bright states depending on the sample rotation, proving that the LC molecules are well aligned. The electro-optical performance of the twisted nematic (TN) mode LC display fabricated using the nanogrooves is also measured and indicates reliable results compared with that of the conventional device. Indeed, scratch-induced nanogrooves are well generated on the curved substrate and ITO-coated PET film to show versatility of our technique. Our platform can suggest a new nanofabrication way to make various electro-optical devices as well as other patterning applications.

摘要

本文介绍了一种简单、快速且经济高效的技术,该技术使用简单的纳米划痕方法来获得高度取向的热致和溶致液晶(LC)相。通过使用金刚石研磨膜在诸如普通玻璃、氧化铟锡(ITO)、曲面玻璃和ITO涂层聚对苯二甲酸乙二酯(PET)薄膜等基板上划痕,制造出高度排列的线性纳米凹槽。为了证明该平台的可行性,使用向列相中的典型热致和溶致LC材料来展示与划痕形成的纳米凹槽一起的排列良好的畴。偏振光学显微镜(POM)图像根据样品旋转显示出优异的暗态和亮态,证明LC分子排列良好。还测量了使用纳米凹槽制造的扭曲向列(TN)模式LC显示器的电光性能,与传统器件相比,结果表明该方法可靠。实际上,在弯曲基板和ITO涂层PET薄膜上很好地产生了划痕诱导的纳米凹槽,以展示我们技术的通用性。我们的平台可以为制造各种电光器件以及其他图案化应用提供一种新的纳米制造方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e4a/6013491/8557a95683ed/41598_2018_27887_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验