Potyrailo Radislav A, Bonam Ravi K, Hartley John G, Starkey Timothy A, Vukusic Peter, Vasudev Milana, Bunning Timothy, Naik Rajesh R, Tang Zhexiong, Palacios Manuel A, Larsen Michael, Le Tarte Laurie A, Grande James C, Zhong Sheng, Deng Tao
General Electric Global Research Center, Niskayuna, New York 12309, USA.
College of Nanoscale Science and Engineering, State University of New York, Albany, New York 12203, USA.
Nat Commun. 2015 Sep 1;6:7959. doi: 10.1038/ncomms8959.
Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring.
将蒸汽传感器组合成阵列是一种公认的折衷方案,以缓解传统传感器选择性差的问题。在此,我们展示了单个纳米制造的传感器,它们不仅能在原始条件下选择性地检测不同的蒸汽,还能对混合蒸汽进行定量,并且能在可变湿度背景下进行检测。我们的传感器设计灵感来源于大闪蝶的彩虹色纳米结构和渐变表面化学,涉及物理和化学设计标准。物理设计涉及在制造的周期性纳米结构上的光学干涉和衍射,并利用纳米结构中的光学损耗来增强反射率的光谱多样性。化学设计采用空间控制的纳米结构功能化。因此,虽然对于大多数传感器阵列来说,在可变背景下对分析物进行定量具有挑战性,但我们使用单个多变量传感器实现了这一目标。这些比色传感器可针对受限区域内的多种蒸汽传感场景进行调整,或作为分布式监测的单个节点。