Chang Jui-Jen, Anandharaj Marimuthu, Ho Cheng-Yu, Tsuge Kenji, Tsai Tsung-Yu, Ke Huei-Mien, Lin Yu-Ju, Ha Tran Minh Dung, Li Wen-Hsiung, Huang Chieh-Chen
1Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 402 Taiwan.
2Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan.
Biotechnol Biofuels. 2018 Jun 7;11:157. doi: 10.1186/s13068-018-1151-7. eCollection 2018.
Enzymatic conversion of lignocellulosic biomass into soluble sugars is a major bottleneck in the plant biomass utilization. Several anaerobic organisms cope these issues via multiple-enzyme complex system so called 'cellulosome'. Hence, we proposed a "biomimic operon" concept for making an artificial cellulosome which can be used as a promising tool for the expression of cellulosomal enzymes in .
According to the proteomic analysis of ATCC27405 induced by Avicel or cellobiose, we selected eight highly expressed cellulosomal genes including a scaffoldin protein gene (), a cell-surface anchor gene (), two exoglucanase genes ( and ), two endoglucanase genes ( and ), and two xylanase genes ( and ). Arranging these eight genes in two different orders, we constructed two different polycistronic operons using the ordered gene assembly in method. This is the first study to express the whole CipA along with cellulolytic enzymes in . Each operon was successfully expressed in RM125, and the protein complex assembly, cellulose-binding ability, thermostability, and cellulolytic activity were demonstrated. The operon with a higher xylanase activity showed greater saccharification on complex cellulosic substrates such as Napier grass than the other operon.
In this study, a strategy for constructing an efficient cellulosome system was developed and two different artificial cellulosomal operons were constructed. Both operons could efficiently express the cellulosomal enzymes and exhibited cellulose saccharification. This strategy can be applied to different industries with cellulose-containing materials, such as papermaking, biofuel, agricultural compost, mushroom cultivation, and waste processing industries.
木质纤维素生物质酶促转化为可溶性糖是植物生物质利用的主要瓶颈。几种厌氧生物通过所谓的“纤维小体”的多酶复合体系统来应对这些问题。因此,我们提出了“仿生操纵子”概念,用于构建一种人工纤维小体,它可作为在……中表达纤维小体酶的有前景的工具。
根据对由微晶纤维素或纤维二糖诱导的嗜热栖热菌ATCC27405的蛋白质组学分析,我们选择了八个高表达的纤维小体基因,包括一个支架蛋白基因()、一个细胞表面锚定基因()两个外切葡聚糖酶基因(和)、两个内切葡聚糖酶基因(和)以及两个木聚糖酶基因(和)。将这八个基因按两种不同顺序排列,我们使用方法中的有序基因组装构建了两个不同的多顺反子操纵子。这是首次在……中表达完整的CipA以及纤维素分解酶的研究。每个操纵子都在嗜热栖热菌RM125中成功表达,并证明了蛋白质复合体组装、纤维素结合能力、热稳定性和纤维素分解活性。木聚糖酶活性较高的操纵子在诸如象草等复杂纤维素底物上的糖化作用比另一个操纵子更强。
在本研究中,开发了一种构建高效纤维小体系统的策略,并构建了两个不同的人工纤维小体操纵子。两个操纵子都能高效表达纤维小体酶并表现出纤维素糖化作用。该策略可应用于含纤维素材料的不同行业,如造纸、生物燃料、农业堆肥、蘑菇种植和废物处理行业。