Suppr超能文献

基于聚类的单通道胎儿心率监测方法。

A clustering-based method for single-channel fetal heart rate monitoring.

机构信息

Department of Electronics and Computer Technology, Campus Universitario Fuentenueva, University of Granada, Granada, Spain.

Department of Informatics, University of Almería, Almería, Spain.

出版信息

PLoS One. 2018 Jun 22;13(6):e0199308. doi: 10.1371/journal.pone.0199308. eCollection 2018.

Abstract

Non-invasive fetal electrocardiography (ECG) is based on the acquisition of signals from abdominal surface electrodes. The composite abdominal signal consists of the maternal electrocardiogram along with the fetal electrocardiogram and other electrical interferences. These recordings allow for the acquisition of valuable and reliable information that helps ensure fetal well-being during pregnancy. This paper introduces a procedure for fetal heart rate extraction from a single-channel abdominal ECG signal. The procedure is composed of three main stages: a method based on wavelet for signal denoising, a new clustering-based methodology for detecting fetal QRS complexes, and a final stage to correct false positives and false negatives. The novelty of the procedure thus relies on using clustering techniques to classify singularities from the abdominal ECG into three types: maternal QRS complexes, fetal QRS complexes, and noise. The amplitude and time distance of all the local maxima followed by a local minimum were selected as features for the clustering classification. A wide set of real abdominal ECG recordings from two different databases, providing a large range of different characteristics, was used to illustrate the efficiency of the proposed method. The accuracy achieved shows that the proposed technique exhibits a competitve performance when compared to other recent works in the literature and a better performance over threshold-based techniques.

摘要

非侵入式胎儿心电图(ECG)基于从腹部表面电极获取信号。复合腹部信号由母体心电图以及胎儿心电图和其他电干扰组成。这些记录可以获取有价值且可靠的信息,有助于确保怀孕期间胎儿的健康。本文介绍了从单通道腹部 ECG 信号中提取胎儿心率的方法。该方法由三个主要阶段组成:基于小波的信号去噪方法、用于检测胎儿 QRS 复合体的新聚类方法,以及最后用于纠正假阳性和假阴性的阶段。该方法的新颖之处在于使用聚类技术将腹部 ECG 中的奇异点分为三种类型:母体 QRS 复合体、胎儿 QRS 复合体和噪声。选择所有局部最大值及其后面的局部最小值的幅度和时间距离作为聚类分类的特征。使用来自两个不同数据库的大量真实腹部 ECG 记录,提供了广泛的不同特征,来说明所提出方法的效率。所达到的准确性表明,与文献中的其他最新作品相比,该技术具有竞争力,并且优于基于阈值的技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验