Suppr超能文献

体液平衡的挑战以味觉选择性的方式差异招募相位多巴胺信号。

Challenges to Body Fluid Homeostasis Differentially Recruit Phasic Dopamine Signaling in a Taste-Selective Manner.

机构信息

Graduate Program in Neuroscience and.

Graduate Program in Neuroscience and

出版信息

J Neurosci. 2018 Aug 1;38(31):6841-6853. doi: 10.1523/JNEUROSCI.0399-18.2018. Epub 2018 Jun 22.

Abstract

The internal environment of an organism must remain stable to ensure optimal performance and ultimately survival. The generation of motivated behaviors is an adaptive mechanism for defending homeostasis. Although physiological state modulates motivated behaviors, the influence of physiological state on phasic dopamine signaling, an underlying neurobiological substrate of reward-driven behavior, is underexplored. Here, we use sodium depletion and water restriction, manipulations of body fluid homeostasis, to determine the flexibility and specificity of dopamine responses. Changes in dopamine concentration were measured using fast-scan cyclic voltammetry in the nucleus accumbens shell of male rats in response to intraoral infusions of fluids that either satisfied or did not satisfy homeostatic need. Increases in dopamine concentration during intraoral infusions were observed only under conditions of physiological deficit. Furthermore, dopamine increases were selective and limited to those that satisfied the need state of the animal. Thus, dopamine neurons track fluid balance and respond to salt and water stimuli in a state- and taste-dependent manner. Using Fluoro-Gold tracing and immunohistochemistry for c-Fos and Foxp2, a marker of sodium-deprivation responsive neurons, we revealed brainstem populations of neurons that are activated by sodium depletion and project directly to the ventral tegmental area. The identified projections may modulate dopamine neuron excitability and consequently the state-specific dopamine release observed in our experiments. This work illustrates the impact of physiological state on mesolimbic dopamine signaling and a potential circuit by which homeostatic disruptions are communicated to mesolimbic circuitry to drive the selective reinforcement of biologically-required stimuli under conditions of physiological need. Motivated behaviors arise during physiological need and are highly selective for homeostasis-restoring stimuli. Although phasic dopamine signaling has been shown to contribute to the generation of motivated behaviors, the state and stimulus specificity of phasic dopamine signaling is less clear. These studies use thirst and sodium appetite to show that dopamine neurons dynamically track body fluid homeostasis and respond to water and salt stimuli in a state- and taste-dependent manner. We also identify hindbrain sodium deprivation-responsive neurons that project directly to the ventral tegmental area, where dopamine neuron cell bodies reside. This work demonstrates command of homeostasis over dopamine signaling and proposes a circuit by which physiological need drives motivated behavior by state- and taste-selective recruitment of phasic dopamine signaling.

摘要

生物体的内部环境必须保持稳定,以确保最佳性能和最终生存。产生动机行为是一种适应机制,用于维持体内平衡。尽管生理状态调节动机行为,但生理状态对相位多巴胺信号的影响,即奖励驱动行为的潜在神经生物学基础,尚未得到充分探索。在这里,我们使用钠耗竭和水限制,即体液内稳态的操作,来确定多巴胺反应的灵活性和特异性。使用快速扫描循环伏安法在雄性大鼠伏隔核壳中测量多巴胺浓度的变化,以响应口腔内输注满足或不满足内稳态需求的液体。仅在生理缺陷的情况下才观察到口腔内输注过程中多巴胺浓度的增加。此外,多巴胺的增加是选择性的,仅限于满足动物需求状态的那些。因此,多巴胺神经元跟踪液体平衡,并以状态和味觉依赖的方式响应盐和水刺激。使用 Fluoro-Gold 示踪和 c-Fos 和 Foxp2 的免疫组化,一种钠剥夺反应神经元的标志物,我们揭示了由钠耗竭激活并直接投射到腹侧被盖区的脑干神经元群体。鉴定出的投射可能调节多巴胺神经元的兴奋性,从而导致我们的实验中观察到的与状态特异性的多巴胺释放。这项工作说明了生理状态对中脑边缘多巴胺信号传递的影响,以及一种潜在的电路,通过该电路,内稳态中断被传递到中脑边缘电路,以在生理需求条件下驱动对生物必需刺激的选择性强化。动机行为在生理需求期间出现,并且对维持体内平衡的刺激具有高度选择性。尽管相位多巴胺信号已被证明有助于产生动机行为,但相位多巴胺信号的状态和刺激特异性尚不清楚。这些研究使用口渴和钠食欲来表明多巴胺神经元动态跟踪体液内稳态,并以状态和味觉依赖的方式响应水和盐刺激。我们还确定了直接投射到腹侧被盖区的后脑钠剥夺反应神经元,多巴胺神经元细胞体位于该区域。这项工作证明了对多巴胺信号传递的内稳态控制,并提出了一个电路,通过该电路,生理需求通过状态和味觉选择性招募相位多巴胺信号来驱动动机行为。

相似文献

8
Thirst recruits phasic dopamine signaling through subfornical organ neurons.口渴通过脑下器官神经元招募相位多巴胺信号。
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30744-30754. doi: 10.1073/pnas.2009233117. Epub 2020 Nov 16.

引用本文的文献

3
Control of sodium appetite by hindbrain aldosterone-sensitive neurons.后脑醛固酮敏感神经元对钠摄食的控制。
Mol Cell Endocrinol. 2024 Oct 1;592:112323. doi: 10.1016/j.mce.2024.112323. Epub 2024 Jun 26.
4
Fluid transitions.体液转换。
Neuropharmacology. 2024 Sep 15;256:110009. doi: 10.1016/j.neuropharm.2024.110009. Epub 2024 May 31.
10
Fluid intake, what's dopamine got to do with it?液体摄入,多巴胺与之有何关系?
Physiol Behav. 2021 Jul 1;236:113418. doi: 10.1016/j.physbeh.2021.113418. Epub 2021 Apr 7.

本文引用的文献

3
Overlapping Brain Circuits for Homeostatic and Hedonic Feeding.用于维持生理平衡和愉悦进食的重叠脑回路。
Cell Metab. 2018 Jan 9;27(1):42-56. doi: 10.1016/j.cmet.2017.09.021. Epub 2017 Nov 5.
5
Biased Oxytocinergic Modulation of Midbrain Dopamine Systems.中脑多巴胺系统的偏倚性催产素能调节
Neuron. 2017 Jul 19;95(2):368-384.e5. doi: 10.1016/j.neuron.2017.06.003. Epub 2017 Jun 29.
9
Thirst.口渴
Curr Biol. 2016 Dec 19;26(24):R1260-R1265. doi: 10.1016/j.cub.2016.11.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验