Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel.
Department of Stress Neurobiology and Behavioral Neurogenetics, Max Planck Institute of Psychiatry, Munich, 80804, Germany.
J Neurosci. 2018 Jul 25;38(30):6751-6765. doi: 10.1523/JNEUROSCI.3106-15.2018. Epub 2018 Jun 22.
Corticotropin-releasing factor (CRF) and its type 1 receptor (CRFR) play an important role in the responses to stressful challenges. Despite the well established expression of CRFR in granular cells (GrCs), its role in procedural motor performance and memory formation remains elusive. To investigate the role of CRFR expression in cerebellar GrCs, we used a mouse model depleted of CRFR in these cells. We detected changes in the cellular learning mechanisms in GrCs depleted of CRFR in that they showed changes in intrinsic excitability and long-term synaptic plasticity. Analysis of cerebella transcriptome obtained from KO and control mice detected prominent alterations in the expression of calcium signaling pathways components. Moreover, male mice depleted of CRFR specifically in GrCs showed accelerated Pavlovian associative eye-blink conditioning, but no differences in baseline motor performance, locomotion, or fear and anxiety-related behaviors. Our findings shed light on the interplay between stress-related central mechanisms and cerebellar motor conditioning, highlighting the role of the CRF system in regulating particular forms of cerebellar learning. Although it is known that the corticotropin-releasing factor type 1 receptor (CRFR) is highly expressed in the cerebellum, little attention has been given to its role in cerebellar functions in the behaving animal. Moreover, most of the attention was directed at the effect of CRF on Purkinje cells at the cellular level and, to this date, almost no data exist on the role of this stress-related receptor in other cerebellar structures. Here, we explored the behavioral and cellular effect of granular cell-specific ablation of CRFR We found a profound effect on learning both at the cellular and behavioral levels without an effect on baseline motor skills.
促肾上腺皮质释放因子(CRF)及其 1 型受体(CRFR)在应对应激挑战的反应中发挥着重要作用。尽管 CRFR 在颗粒细胞(GrC)中的表达已得到充分证实,但它在程序性运动表现和记忆形成中的作用仍不清楚。为了研究 CRFR 在小脑 GrC 中的表达作用,我们使用了一种在这些细胞中耗尽 CRFR 的小鼠模型。我们检测到 CRFR 耗竭的 GrC 中细胞学习机制发生了变化,因为它们显示出内在兴奋性和长时程突触可塑性的变化。从 KO 和对照小鼠获得的小脑转录组分析检测到钙信号通路成分表达的明显改变。此外,特异性耗尽 GrC 中 CRFR 的雄性小鼠表现出加速的巴甫洛夫式眨眼条件反射,但在基线运动表现、运动或恐惧和焦虑相关行为方面没有差异。我们的研究结果阐明了与应激相关的中枢机制与小脑运动调节之间的相互作用,突出了 CRF 系统在调节特定形式的小脑学习中的作用。尽管已知促肾上腺皮质释放因子 1 型受体(CRFR)在小脑中有高表达,但在行为动物中小脑功能中 CRFR 的作用却很少受到关注。此外,大多数注意力都集中在 CRF 对细胞水平上浦肯野细胞的影响上,迄今为止,几乎没有关于该应激相关受体在其他小脑结构中的作用的数据。在这里,我们探索了颗粒细胞特异性 CRFR 耗竭的行为和细胞效应。我们发现,在细胞和行为水平上,学习都受到了深刻的影响,而对基线运动技能没有影响。