Suppr超能文献

用于增强和持续递药以治疗脑肿瘤的可生物降解的 PEG-聚(ω-十五内酯-co-p-二氧六环酮)纳米粒

Biodegradable PEG-poly(ω-pentadecalactone-co-p-dioxanone) nanoparticles for enhanced and sustained drug delivery to treat brain tumors.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.

Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06511, USA.

出版信息

Biomaterials. 2018 Sep;178:193-203. doi: 10.1016/j.biomaterials.2018.06.024. Epub 2018 Jun 18.

Abstract

Intracranial delivery of therapeutic agents is limited by penetration beyond the blood-brain barrier (BBB) and rapid metabolism of the drugs that are delivered. Convection-enhanced delivery (CED) of drug-loaded nanoparticles (NPs) provides for local administration, control of distribution, and sustained drug release. While some investigators have shown that repeated CED procedures are possible, longer periods of sustained release could eliminate the need for repeated infusions, which would enhance safety and translatability of the approach. Here, we demonstrate that nanoparticles formed from poly(ethylene glycol)-poly(ω-pentadecalactone-co-p-dioxanone) block copolymers [PEG-poly(PDL-co-DO)] are highly efficient nanocarriers that provide long-term release: small nanoparticles (less than 100 nm in diameter) continuously released a radiosensitizer (VE822) over a period of several weeks in vitro, provided widespread intracranial drug distribution during CED, and yielded significant drug retention within the brain for over 1 week. One advantage of PEG-poly(PDL-co-DO) nanoparticles is that hydrophobicity can be tuned by adjusting the ratio of hydrophobic PDL to hydrophilic DO monomers, thus making it possible to achieve a wide range of drug release rates and drug distribution profiles. When administered by CED to rats with intracranial RG2 tumors, and combined with a 5-day course of fractionated radiation therapy, VE822-loaded PEG-poly(PDL-co-DO) NPs significantly prolonged survival when compared to free VE822. Thus, PEG-poly(PDL-co-DO) NPs represent a new type of versatile nanocarrier system with potential for sustained intracranial delivery of therapeutic agents to treat brain tumors.

摘要

治疗剂的颅内递送受到血脑屏障(BBB)穿透性和递送至的药物快速代谢的限制。载药纳米颗粒(NPs)的对流增强递送(CED)可实现局部给药、分布控制和药物持续释放。虽然一些研究人员已经表明重复 CED 程序是可能的,但延长持续释放时间可以消除对重复输注的需求,从而提高该方法的安全性和可转化性。在这里,我们证明由聚乙二醇-聚(ω-十五内酯-co-p-二氧六环酮)嵌段共聚物[PEG-聚(PDL-co-DO)]形成的纳米颗粒是高效的纳米载体,可提供长期释放:小纳米颗粒(直径小于 100nm)在体外持续释放放射增敏剂(VE822)长达数周,在 CED 期间提供广泛的颅内药物分布,并在大脑中保留超过 1 周的药物。PEG-聚(PDL-co-DO)纳米颗粒的一个优势是可以通过调整疏水性 PDL 与亲水性 DO 单体的比例来调节疏水性,从而可以实现广泛的药物释放速率和药物分布谱。当通过 CED 将载 VE822 的 PEG-聚(PDL-co-DO) NPs 施用于颅内 RG2 肿瘤大鼠,并与 5 天的分割放射治疗相结合时,与游离 VE822 相比,载 VE822 的 PEG-聚(PDL-co-DO) NPs 显著延长了存活时间。因此,PEG-聚(PDL-co-DO) NPs 代表了一种新型多功能纳米载体系统,具有持续颅内递送治疗剂以治疗脑肿瘤的潜力。

相似文献

引用本文的文献

5
Convection-enhanced Diffusion: A Novel Tactics to Crack the BBB.增强型弥散:破解血脑屏障的新策略。
Curr Drug Deliv. 2024;21(11):1515-1528. doi: 10.2174/0115672018266501231207095127.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验