Suppr超能文献

层 I 中间神经元在新生儿发育过程中使感觉图精细化。

Layer I Interneurons Sharpen Sensory Maps during Neonatal Development.

机构信息

Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA.

Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA.

出版信息

Neuron. 2018 Jul 11;99(1):98-116.e7. doi: 10.1016/j.neuron.2018.06.002. Epub 2018 Jun 21.

Abstract

The neonatal mammal faces an array of sensory stimuli when diverse neuronal types have yet to form sensory maps. How these inputs interact with intrinsic neuronal activity to facilitate circuit assembly is not well understood. By using longitudinal calcium imaging in unanesthetized mouse pups, we show that layer I (LI) interneurons, delineated by co-expression of the 5HT3a serotonin receptor (5HT3aR) and reelin (Re), display spontaneous calcium transients with the highest degree of synchrony among cell types present in the superficial barrel cortex at postnatal day 6 (P6). 5HT3aR Re interneurons are activated by whisker stimulation during this period, and sensory deprivation induces decorrelation of their activity. Moreover, attenuation of thalamic inputs through knockdown of NMDA receptors (NMDARs) in these interneurons results in expansion of whisker responses, aberrant barrel map formation, and deficits in whisker-dependent behavior. These results indicate that recruitment of specific interneuron types during development is critical for adult somatosensory function. VIDEO ABSTRACT.

摘要

新生哺乳动物在各种神经元类型尚未形成感觉图时,会面临一系列感觉刺激。这些输入如何与内在神经元活动相互作用,促进回路组装,目前还不是很清楚。通过在未麻醉的小鼠幼仔中进行纵向钙成像,我们发现层 I(LI)中间神经元,通过表达 5-羟色胺受体 5HT3a(5HT3aR)和 reelin(Re)来界定,在出生后第 6 天(P6)的浅层桶状皮层中表现出与存在的细胞类型中最高程度同步的自发钙瞬变。在这段时间内,5HT3aR Re 中间神经元被胡须刺激激活,而感觉剥夺会导致其活动去同步化。此外,通过在这些中间神经元中敲低 NMDA 受体(NMDARs)来减弱丘脑输入,会导致胡须反应扩大、异常的桶状图形成以及胡须依赖性行为缺陷。这些结果表明,在发育过程中特定中间神经元类型的募集对于成年体感功能至关重要。视频摘要。

相似文献

引用本文的文献

2
Opportunities and Challenges of Brain-on-a-Chip Interfaces.脑机接口的机遇与挑战
Cyborg Bionic Syst. 2025 Jun 17;6:0287. doi: 10.34133/cbsystems.0287. eCollection 2025.
4
Ongoing loss of viable neurons for weeks after mild hypoxia-ischaemia.轻度缺氧缺血后数周内,存活神经元持续丢失。
Brain Commun. 2025 Apr 18;7(2):fcaf153. doi: 10.1093/braincomms/fcaf153. eCollection 2025.
8
Early-life maturation of the somatosensory cortex: sensory experience and beyond.早期躯体感觉皮层的成熟:感觉体验及其他。
Front Neural Circuits. 2024 Jul 8;18:1430783. doi: 10.3389/fncir.2024.1430783. eCollection 2024.
9
Interneuron Diversity: How Form Becomes Function.中间神经元的多样性:形式如何转化为功能。
Cold Spring Harb Perspect Biol. 2024 Jul 22. doi: 10.1101/cshperspect.a041513.

本文引用的文献

1
Inhibitory circuit gating of auditory critical-period plasticity.听觉关键期可塑性的抑制性回路门控。
Nat Neurosci. 2018 Feb;21(2):218-227. doi: 10.1038/s41593-017-0064-2. Epub 2018 Jan 22.
8
Developmental broadening of inhibitory sensory maps.抑制性感觉图谱的发育性拓宽
Nat Neurosci. 2017 Feb;20(2):189-199. doi: 10.1038/nn.4467. Epub 2016 Dec 26.
9
Development of Activity in the Mouse Visual Cortex.小鼠视觉皮层活动的发育
J Neurosci. 2016 Nov 30;36(48):12259-12275. doi: 10.1523/JNEUROSCI.1903-16.2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验