Suppr超能文献

人类海马体前-后轴上的多种表示尺度。

Multiple Scales of Representation along the Hippocampal Anteroposterior Axis in Humans.

机构信息

Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada.

Department of Psychology, SUNY Geneseo, Bailey 133, 1 College Circle, Geneseo, NY 14454, USA.

出版信息

Curr Biol. 2018 Jul 9;28(13):2129-2135.e6. doi: 10.1016/j.cub.2018.05.016. Epub 2018 Jun 21.

Abstract

The ability to represent the world accurately relies on simultaneous coarse and fine-grained neural information coding, capturing both gist and detail of an experience. The longitudinal axis of the hippocampus may provide a gradient of representational granularity in spatial and episodic memory in rodents and humans [1-8]. Rodent place cells in the ventral hippocampus exhibit significantly larger place fields and greater autocorrelation than those in the dorsal hippocampus [1, 9-11], which may underlie a coarser and slower changing representation of space [10, 12]. Recent evidence suggests that properties of cellular dynamics in rodents can be captured with fMRI in humans during spatial navigation [13] and conceptual learning [14]. Similarly, mechanisms supporting granularity along the long axis may also be extrapolated to the scale of fMRI signal. Here, we provide the first evidence for separable scales of representation along the human hippocampal anteroposterior axis during navigation and rest by showing (1) greater similarity among voxel time courses and (2) higher temporal autocorrelation in anterior hippocampus (aHPC), relative to posterior hippocampus (pHPC), the human homologs of ventral and dorsal rodent hippocampus. aHPC voxels exhibited more similar activity at each time point and slower signal change over time than voxels in pHPC, consistent with place field organization in rodents. Importantly, similarity between voxels was related to navigational strategy and episodic memory. These findings provide evidence that the human hippocampus supports an anterior-to-posterior gradient of coarse-to-fine spatiotemporal representations, suggesting the existence of a cross-species mechanism, whereby lower neural similarity supports more complex coding of experience.

摘要

准确地表示世界的能力依赖于同时进行的粗糙和精细的神经信息编码,以捕捉经验的要点和细节。在啮齿类动物和人类中,海马体的纵轴可能提供了空间和情景记忆中表示粒度的梯度[1-8]。腹侧海马体中的啮齿动物位置细胞表现出比背侧海马体更大的位置域和更高的自相关[1、9-11],这可能是空间的表示更粗糙和变化更缓慢的基础[10、12]。最近的证据表明,在空间导航[13]和概念学习[14]期间,人类 fMRI 可以捕捉到啮齿动物细胞动力学的特性。同样,支持沿长轴粒度的机制也可以外推到 fMRI 信号的尺度。在这里,我们通过显示(1)体素时间序列之间的相似性更高,以及(2)前海马体(aHPC)相对于后海马体(pHPC)的时间自相关更高,为在导航和休息期间人类海马体前后轴上存在可分离的表示尺度提供了第一个证据,aHPC 体素在每个时间点的活动更相似,并且随时间的信号变化更慢,这与啮齿动物的位置场组织一致。aHPC 体素的相似性与导航策略和情景记忆有关。这些发现提供了证据表明,人类海马体支持从前向后的粗糙到精细时空表示的梯度,这表明存在跨物种的机制,即较低的神经相似性支持更复杂的经验编码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验