Häkkinen Suvi, Beckett Alexander, Walker Erica, Huber Laurentius Renzo, Feinberg David A
Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States.
Advanced MRI Technologies, Sebastopol, CA, United States.
bioRxiv. 2025 Sep 4:2025.08.29.673151. doi: 10.1101/2025.08.29.673151.
Spatial accuracy and venous biases are a central concern in mesoscale fMRI, with subcortical brain regions facing additional challenges due to lower contrast-to-noise ratio (CNR), high physiological noise, and complicated vasculature. Here, we optimized CBV VASO on the NexGen 7T scanner for layer-specific investigations of the hippocampus. The presence of venous biases in VASO and BOLD (from the same acquisition) was then compared by using an established autobiographical memory task. While VASO and BOLD based activation patterns converged at macroscale, layer-specific differences emerged in the hippocampal subiculum, consistent with venous bias in the inner layers of the subiculum which can be explained by the unique two-sided venous drainage. Further, both VASO and BOLD showed sensitivity to short blocks (elaboration > construction), revealing an anterior-posterior distinction consistent with stronger involvement of the posterior hippocampus. Hippocampal cortical connectivity revealed brain circuitry between subcortical and cortical regions. Thus, hippocampal fMRI allows mapping layer function with high accuracy, made possible by sequence timing optimization on the high performance NexGen 7T scanner. The improved MR imaging has been developed to enable precision mapping of subcortical brain gray matter. By capturing changes of neural information flow within and across the microcircuitry of the hippocampus, it can provide deeper insights into a number of neuropsychological phenomena and the early changes occurring in Alzheimer's disease (AD) and mild cognitive impairment (MCI).
空间准确性和静脉偏差是中尺度功能磁共振成像(fMRI)的核心问题,由于皮层下脑区的对比度噪声比(CNR)较低、生理噪声高以及血管系统复杂,这些区域面临着额外的挑战。在此,我们在NexGen 7T扫描仪上优化了脑血容量(CBV)动脉自旋标记(VASO)技术,用于海马体的层特异性研究。然后,通过使用既定的自传体记忆任务,比较了VASO和血氧水平依赖性功能磁共振成像(BOLD,来自同一采集)中静脉偏差的存在情况。虽然基于VASO和BOLD的激活模式在宏观尺度上趋同,但在海马下托出现了层特异性差异,这与下托内层的静脉偏差一致,这可以通过独特的双侧静脉引流来解释。此外,VASO和BOLD对短块(细化>构建)均表现出敏感性,揭示了前后差异,这与后海马体更强的参与度一致。海马体皮层连接揭示了皮层下和皮层区域之间的脑回路。因此,海马体fMRI能够高精度地绘制层功能,这是通过在高性能NexGen 7T扫描仪上进行序列定时优化实现的。已开发出改进的磁共振成像技术,以实现皮层下脑灰质的精确映射。通过捕捉海马体微回路内和跨微回路的神经信息流变化,它可以更深入地了解一些神经心理学现象以及阿尔茨海默病(AD)和轻度认知障碍(MCI)中发生的早期变化。