Suppr超能文献

基于指纹的打分函数用于预测碳酸酐酶 II 抑制剂的结合模式。

Development of a Fingerprint-Based Scoring Function for the Prediction of the Binding Mode of Carbonic Anhydrase II Inhibitors.

机构信息

Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.

NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy.

出版信息

Int J Mol Sci. 2018 Jun 23;19(7):1851. doi: 10.3390/ijms19071851.

Abstract

Carbonic anhydrase II (CAII) is a zinc-containing metalloenzyme whose aberrant activity is associated with various diseases such as glaucoma, osteoporosis, and different types of tumors; therefore, the development of CAII inhibitors, which can represent promising therapeutic agents for the treatment of these pathologies, is a current topic in medicinal chemistry. Molecular docking is a commonly used tool in structure-based drug design of enzyme inhibitors. However, there is still a need for improving docking reliability, especially in terms of scoring functions, since the complex pattern of energetic contributions driving ligand⁻protein binding cannot be properly described by mathematical functions only including approximated energetic terms. Here we report a novel CAII-specific fingerprint-based (IFP) scoring function developed according to the ligand⁻protein interactions detected in the CAII-inhibitor co-crystal structures of the most potent CAII ligands. Our IFP scoring function outperformed the ability of Autodock4 scoring function to identify native-like docking poses of CAII inhibitors and thus allowed a considerable improvement of docking reliability. Moreover, the ligand⁻protein interaction fingerprints showed a useful application in the binding mode analysis of structurally diverse CAII ligands.

摘要

碳酸酐酶 II(CAII)是一种含锌的金属酶,其异常活性与各种疾病有关,如青光眼、骨质疏松症和不同类型的肿瘤;因此,开发 CAII 抑制剂是药物化学中的一个热门课题,CAII 抑制剂可能成为治疗这些疾病的有前途的治疗剂。分子对接是基于结构的酶抑制剂药物设计中常用的工具。然而,对接可靠性仍然需要提高,特别是在评分函数方面,因为仅包括近似能量项的数学函数无法正确描述驱动配体-蛋白结合的复杂能量贡献模式。在这里,我们报告了一种新的基于 CAII 特异性指纹(IFP)的评分函数,该函数是根据 CAII-抑制剂共晶结构中最有效的 CAII 配体检测到的配体-蛋白相互作用开发的。我们的 IFP 评分函数优于 Autodock4 评分函数识别 CAII 抑制剂天然样对接构象的能力,从而大大提高了对接可靠性。此外,配体-蛋白相互作用指纹在结构多样的 CAII 配体的结合模式分析中具有有用的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a0/6073570/f158ff95e241/ijms-19-01851-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验